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Abstract. We review existing approaches to the specification and estima-
tion of dynamic microeconomic models of fertility. Dynamic fertility mod-
els explain the evolution of fertility variates over the life-cycle as the solu-
tion to a dynamic programming model involving economic choices. Dy-
namic models may be classified into structural and reduced-form models.
Structural models generally require solution of the underlying dynamic pro-
gramming problem. Reduced-form models, while based on a structural spe-
cification, do not. Recent innovations in estimation methodologies make
both types practical and realistic alternatives to static models of lifetime fer-
tility.
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1. Introduction and motivation

This paper surveys dynamic microeconomic models of fertility choice that
have appeared in the recent literature. By dynamic models we mean ones that
explicitly model thetime profileor intertemporal evolutionof fertility choice



and outcomes, as distinct from models that study once-and-for-all lifetime fer-
tility decisions. Within the class of dynamic fertility models, we offer the fol-
lowing general taxonomy. A model may be consideredstructural when its
estimable components require the specification and exact solution of an expli-
cit dynamic maximization problem.Reduced-formdynamic models are those
which may estimate structural parameters or relationships arising from a dy-
namic programming problem, but do not rely on the exact solution of the dy-
namic equations. For instance, the form of a reduced-form model may be spe-
cified in conformity with some tractable econometric framework not tied to
the exact form of the model’s solution. Our paper concentrates on these
two general approaches to analyzing fertility dynamics.1

To further sharpen our focus we survey onlyeconomicmodels of fertil-
ity, i.e., models in which fertility variates are substantially outcomes of an
economic choice process. This deliberately omits discussion of an impor-
tant research program that studies fertility dynamics but which emphasizes
biological rather than economic determinants (i.e., the seminal work of
Sheps and Menken 1973 and derivative papers). We neglect these models,
but do so without prejudice to their valuable contributions. Finally, we also
omit aggregative or macroeconomic models of fertility,2 even if these have
microfoundations.

In relation to other surveys of this literature, this paper fills a gap that is
not covered by the recent surveys of Montgomery and Trussell (1984),
Eckstein and Wolpin (1989), Rust (1994), and Olsen (1994). Olsen (1994)
discusses several economic approaches to fertility notably what may be
called the Easterlinian, Schultzian, and Beckerian approaches after those re-
spective authors. All of the approaches surveyed in Olsen lead to essen-
tially static models of lifetime fertility choice.3 While not their sole empha-
sis, the more technical surveys of Montgomery and Trussell, Eckstein and
Wolpin, and Rust (1994) issues relevant to the specification of dynamic fer-
tility models. Eckstein and Wolpin, and Rust (1994) outline a general dy-
namic framework that encompasses many discrete-choice models used in
other research besides fertility. Like these studies, we cover general
approaches, but our emphasis is specifically on dynamic fertility models.
Montgomery and Trussell provide a more focused discussion of fertility is-
sues, albeit in the context of the handful of dynamic models around at the
time. (They also give a good perspective of the relationship between life-
cycle models of fertility against the research on lifetime fertility behavior
and female labor supply.) Our paper may be regarded as both an updating
of Montgomery and Trussel’s (1986) survey and an expansion upon the is-
sues of dynamic specification and estimation.

Recent research has turned up many stylized empirical regularities with
a time dimension.4 None of these facts can be adequately explained by a
model of lifetime fertility choice, however sophisticated, since lifetime
fertility models lack a true time dimension. Treating fertility decisions as
once-and-for-all choices makes it difficult, if not impossible, to connect rea-
lized fertility to variations in contraception costs, wages, income, education,
mortality risks, or women’s labor market participation over time, nor can
these explain birth-timing or spacing. Recent efforts, consequently, have fo-
cused on tractable models that incorporate fertility dynamics. This new
wave of dynamic analysis reflects both the conscious attempt to overcome
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prior analytical limitations and the influence of methodological develop-
ments in other areas of economics.

Dynamic approaches based on life-cycle choice represent a significant
philosophical departure from the traditional static view of the fertility deci-
sion. Unlike the one-shot family size decision of static models, fertility
choices over the life-cycle become a plan foreach time periodand each
contingency(i.e., apolicy). Dynamic models also result in optimal fertility
policies that areforward-lookingand time-consistent.5

From an econometric standpoint two further differences may be noted.
Structural dynamic models generally prespecify stochastic elementsas an
integral componentof the model, whereas lifetime choice models will intro-
duce these directly into the estimating relations. This, however, can make a
big difference not just for interpretation of the econometric estimates, but
for the appropriate choice of the estimator itself. Further, it makes more sense
to imbed certain types of randomness in a dynamic setting; for instance, un-
certainty about natural fecundity or preferences on family size can evolve as
individuals acquire fertility experience. Finally, to the extent that some static
models represent reduced-forms or time-aggregated versions of a dynamic
model, information is lost in reducing or aggregating the model over time.
When possible, estimation of a structural model can be more informative.

These considerations work in favor of dynamic life-cycle fertility mod-
els. Counterbalancing these advantages, however, is the fact that, at the
present juncture, the use of dynamic models still requires a trade-off be-
tweenmodel realismand model tractability.This will become more appar-
ent in the ensuing text.

Our paper is organized as follows. Section 2 studies a general frame-
work nesting several well-known fertility models of the structural variety,
including that of Heckman and Willis (1976), Wolpin (1984), Hotz and
Miller (1984), Rosenzweig and Schultz (1985), Newman (1988), and
Leung (1991). Section 2 also covers recent estimation/simulation techniques
that have been proposed for structural models of the discrete-choice type.
Section 3 reviews reduced-form models, focusing primarily on specification
and estimation issues of hazard-rate models and linear approximations to
optimal decision rules. Section 4 surveys other dynamic models that are
neither structural nor reduced-form in nature.

2. Structural models

2.1 General framework

Introducing more general and “realistic” types of uncertainty, patterns of se-
rial correlation, and time-variation with economic or biological variables re-
quires an explicitly dynamic framework. Astructural approach (i) models
observed fertility as part of the solution of an explicit dynamic program-
ming problem, and (ii) derives estimable or computable relationships from
this solution.

A general framework nesting several well-known dynamic models6 may
be given as follows. An individuali maximizes the (expected, discounted)
value of utility over her life-cyclet � s; :::;T :
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max Es
XT
t�s

b tU �Nt; Mt; Xt; Ht; ut; h� �1�

using all available information known as ofs. (We have suppressed thei
index for notational clarity.) The uncertainty underlying the conditional ex-
pectationEs generally comes from the risk of a new birth and from infant
mortality risk, though there can be other sources (e.g., income shocks,
wage shocks, preference shocks). Where convenient we represent all
sources of uncertainty as a general error termet with well-defined joint den-
sity functionf (et).

The termb<1 is a discount factor,U is the period utility function att,
and h is a preference parameter which, for the moment, we regard as a
once-and-for-all shock realized ats. (h thus reflects heterogeneity among
individuals.) The time-varying arguments of the utility function,
Nt; Mt; Xt; Ht, are, respectively, current births, family size7, the quantity
of market goods consumed, and non-work (leisure) time. In some models,
such as Hotz and Miller (1984), leisure is an input into a production func-
tion for home goodsZt that enter the period utility function. HereHt gets
subsumed into utility directly. The variableut measures contraceptive effi-
ciency, generally assumed to lie between a lower boundu � 0 and an
upper bound�u � 1. Table 1 summarizes the forms ofU used in several
models that are special cases of the general framework above.

The analyst’s choice of which arguments to include inU depends large-
ly on the research question of interest. For example, non-work time,Ht,
appears in Hotz and Miller (1984), a study intimately concerned with the
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Table 1. Specifications of period utility, various structural models

Heckman and Willis (1976):
U=W(wNt,Xt)–f (ut)

Wolpin (1984):
U=W(Mt,Xt,h)

= (a1+h)Mt –a2M2
t +b1Xt–b2X2

t +cMtXt; c any sign

Hotz and Miller (1984):
U=W(Mt,Zt); Zt=Z(Ht, Xt, ft)

whereZt is household production
ft is a random error

Rosenzweig and Schultz (1985):
U=W(Nt, Mt, Xt, Ht, h)

=�1Nt–�2N2
t +a1Mt –a2M2

t +b1(h)Xt–b2X2
t + d1Ht –d2H2

t +cHt Mt; c any sign

Newman (1988):
U=W(Mt, Xt, ut)

=a1Mt–a2M2
t +b1Xt –b2X2

t +cMt Xt +q1ut–q2u2
t ; c any sign

Leung (1991):
U=W(Mt, Xt)–f (p (ut))

wherep (.) is the probability of a birth

Note: All parameters above, unless specified, are positive. All variables are described in the
text of Sect. 2.1.



interaction between labor force participation of women and fertility deci-
sions. There is, however, one important consequence of omitting contracep-
tive efficiencyut in period utility U. As Montgomery and Trussell (1984,
p. 261) point out, deletion ofut as an argument inU leads to the result that
the individual always chooses a level of contraceptive efficiency equal to
one of the cornersu or �u. Hotz and Miller (1984) and Rosenzweig and
Schultz (1985) omitut; Heckman and Willis (1976), Newman (1988), and
Leung (1991) do not. Wolpin assumes that individuals can choose the num-
ber of new births directly, but this is tantamount to selecting a zero or
100% effective contraceptive regime, if one were to assume further that a
birth is sure to occur without contraception.

Maximization is subject to a sequence of budget constraints for each
periodt:

It � wt � �H ÿHt� � Xt � pMt Mt � p ut ut; �2�
whereIt is current (husband’s) income,wt is the individual’s market wage,
�H is the total amount of time available for work, so that� �H ÿHt� is the

mother’s labor market time. The variablespMt ; p
u
t are, respectively, the full

dollar costs of an unit ofMt, andut, relative to the numeraire goodXt. La-
bor market returns,wt � �H ÿHt�, figure in Hotz and Miller (1984) and Ro-
senzweig and Schultz (1985) but not in any of the other studies noted
above. Contraceptive costsp ut ut appear only in Rosenzweig and Schultz
(1985) and Newman (1988). One common feature to all these models, how-
ever, is that capital markets for intertemporal transfers of wealth are non-
existent. This lack of an efficient mechanism for consumption-smoothing
and the fact that children are durable goods imparts added value to children
as “assets,” over and above their value as “current goods” inU.8

The individual’s choice variables are, generally, consumptionXt, non-
work timeHt, and contraceptive efficiencyut, while family size evolves ac-
cording to

Mt�1 �Mt �Nt; �3�
whereNt is the number (zero or one) of surviving newborn children in per-
iod t. Whether a net birth occurs or not typically depends on some stochas-
tic birth and death processes, as well as the level of contraceptive effi-
ciency. In general, one has

Nt � N �p b �1ÿ ut�; p m�; �4�
wherep b is the probability of a birth assuming no contraceptive control
(i.e., an individual’s natural fecundity) andp m is infant mortality risk. The
probabilitiesp b andp m can vary with different biological, socio-economic,
or even choice variables of interest to the analyst, and such variables are
commonplace in empirical work based on these models.

At the theoretical level, however, the six models mentioned above treat
p b and p m as exogenous (these are also generally assumed to be serially
independent). On the other hand, thatp b and p m are known to either the
individual or the researcher is not a common assumption. Rosenzweig and
Schultz (1985), for one, explore the effects of an individual’s incomplete
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knowledge aboutp b on the decision to contracept. But in Newman (1988)
individuals do not, over time, learn more about their natural fecundity than
they know at the onset of the fertile period. We assume thatp b>0 over the
individual’s fertile cycle, although in Hotz and Miller (1984) the individual
faces a probability of infertility before the end of the cycle.

Within specification (4) are nested two general types of fertility models:
models ofperfect fertility control, andhazard modelsin which fertility con-
trol is imperfect. If we setp b � 1 always and we constrain the choice ofu
to 0 or 1 (either directly, or indirectly via omittingu in period utility U)
then control over births is perfect as in Wolpin (1984) or Rosenzweig and
Schultz (1985). Hotz and Miller (1984) differ slightly in thatu is either
u≥0 or �u≤1. Whenu >0 and �u<1, the Hotz-Miller model implies a non-
zero birth hazard in each period, though it takes only discrete, dichotomous
values. A true continuous hazard model arises in Heckman and Willis
(1976), Newman (1988) and Leung (1991) as the optimalu is continuous-
ly-varying in the closed interval [0,1].9, 10

2.2 Predictions of the general framework

Contraceptive efficiency, birth spacing, and birth timing.In the general
framework above, the rigor of contraceptive efforts employed over the life-
cycle is the critical behavioral determinant of the onset, pace, and spacing
of births, as well as realized family size over the life-cycle.Ceteris pari-
bus, a more lax contraceptive strategy produces more frequent and more
narrowly-spaced births. A useful starting point, then, is the analysis of dy-
namics of the contraceptive decision. To study this, define the value func-
tion V as the maximized value of the individual’s problem (1) whenXt; Ht;
amd ut are optimally chosen. That is, ifN�t ; X

�
t ; H

�
t , andu�t are the solu-

tion values for the maximization, then

V �Mt; t; p
b; pm; It; wt; p

M
t ; p

u
t ; b; h�

� Es
XT
t�s

b tU �N�t ; Mt; X
�
t ; H

�
t ; u

�
t ; h�: �5�

To derive some analytical results the following simplifying assumptions
will be convenient: (i) letUNt � 0, so that a current birth enters utility via
next period’s family sizeMt�1 only, and (ii) let the probability of a surviv-
ing birth bept � p b �1ÿ ut� ÿ p m, so that mortality risk comes into play
only in the same period as a birth. Suppressing other arguments inV save
M and t, Bellman’s optimality principle allows us to rewriteV as

V�Mt; t� � maxfU�Mt; Xt; Ht; ut; h� � bEtV�Mt�1; t� 1�g
� maxfU �Mt; Xt; Ht; u t; h� � b �pt V�Mt � 1; t� 1�
� �1ÿ pt�V �Mt; t� 1��g: �6�

(Note thatMt�1 �Mt with probability 1ÿ pt and Mt�1 �Mt � 1 with
probabilitypt.) ReplaceXt with It � wt � �H ÿHt� ÿ pMt Mt ÿ p ut ut via (2).
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TreatingMt as fixed, the partial derivative of the right-hand-side with re-
spect tout gives the optimal contraception rule:

ÿUXt p ut �Uut ÿ b p b �V �Mt � 1; t� 1� ÿ V �Mt; t� 1�� � 0
or

UXt p
u
t ÿUut � b p b �V �Mt; t� 1� ÿ V �Mt � 1; t� 1��: �7�

The left- and right-hand-sides of (7) are, respectively, the marginal costs of
contraception (MCC) and the expected marginal benefits of contraception
(EMBC). These are plotted in Fig. 1 over the range ofu. The graph of
UXt p

u
t �Uut is drawn as an upward sloping curve taking on positive val-

ues, and this reflects the usual assumptions (see Heckman and Willis 1976,
or Leung 1991) thatUX > 0; UXX < 0, and thatUu < 0; Uuu < 0 (i.e., the
increments of contraceptive disutility fall as one increases contraceptive
levels). On the other hand, the graph of the expected marginal benefits of
contraception is a flat curve inu, whose exact sign and location is deter-
mined by the sign and value of

DV �Mt�1; t� 1� � V �Mt; t� 1� ÿ V �Mt � 1; t� 1�; �8�
which is the capitalized value (att+1) of preventing a birth att, given par-
ity Mt. In all the models considered here, variations in the contraceptive
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decision (or the birth decision, in the case where fertility control is perfect)
are due to shifts in their respective MCC and EMBC curves. These shifts
govern the evolution of fertility control over time.11 Via their effect on
these curves, one may analyze the impact of time-variations in exogenous
variables or parameters on the likelihood of a birth. The resulting changes
in birth timing and spacing patterns, and completed fertility levels follow
directly.

Equation (8) highlights the principal practical difficulty attendant to cur-
rent structural models. With the exception of Newman’s (1988) model, vir-
tually no structural fertility model generates closed-form solutions for the
EMBC curve as a function of basic variables and parameters. This creates
substantial difficulties not just for arriving at an econometrically estimable
version of the theory, it also makes it difficult to conduct comparative dy-
namics cleanly, with respect to the effects of changes in variables of inter-
est on birth control and the birth hazard. For this reason, we rely heavily
on the results of Newman (1988) to guide our discussion of comparative
dynamics that follows. In addition, as the models nested inside the above
general structure make different structural assumptions, the mapping from
basic variables and parameters to MCC or EMBC will vary somewhat from
model to model. Where these lead to substantive differences in predictions,
we provide some extra discussion.

Effects of variations in family size.The six prototypical models mentioned
above produce different predictions about the response of the birth likeli-
hood and contraceptive efficiency to changes in family sizeMt (i.e., par-
ity). We now attempt to sort out these apparently conflicting findings.

A key theoretical result that frequently appears in the literature is con-
cavity of the value functionV in family sizeMt. Under reasonable condi-
tions, it has been shown that when the underlying period utility functionU
is concave inMt, the value functionV will also be concave inMt.

12 This
implies thatDV in (8) will increase with parity, as the negative ofDV will
decrease withMt. So as the number of births increase, the EMBC curve
shifts up, which tends to raise contraceptive efficiency. The effect of larger
Mt on the MCC curve, however, is not clear-cut, and its sign depends to
some degree on how strongly children substitute for market goods. Studies
with contraception in the utility function typically assume that the cross-
partialUXu � 0. With this, the derivative of the left-hand-side of (7) with
respect toMt is

dMCC=dMt � �UXM ÿUXX pMt � p ut :

Thus, ifUXM=pMt ÿUXX exceeds (is below) zero the MCC curve shifts up
(down) as parityMt rises. AsÿUXX is nonnegative, the MCC curve is
guaranteed to shift up with risingMt if children are gross complements to
market goods, that is,UXM > 0. In this case, the tension between the sepa-
rate upward shifts of EMBC and MCC confound the final effect of rising
Mt on the level of contraceptionut. More generally, when
UXM=p

M
t ÿUXX > 0, the final effect on contraceptive efficiency isambig-

uous, depending on the relative size of the shifts of EMBC and MCC.13
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The shift of EMBC is large when (i) the discount factorb is large (i.e.,
people do not discount future utility so heavily), (ii) the probability of a birth
p b is high, and (iii)V is very concave inMt, so that the response ofDV to
higherMt is large (this usually means that the marginal utility of additional
children falls quickly). All of these are more plausible for developed econo-
mies rather than developing economies.14 The shift of MCC due to increased
family size will be smaller and less positive (iv) the lower are the explicit
costs of contraception, and (v) the larger is the utility loss from being able
to consume fewer market goods. These are also more likely to hold in devel-
oped societies. The above five considerations are consistent with Newman
(1988). Generally then, in developed economies, mothers with larger families
would tend to have higher contraceptive efficiency levels. In these situations,
births will tend to be fewer and more widely-spaced as parity rises. In devel-
oping economies, it could go either way.

There are two cases in which contraceptive efficiency increasesunam-
biguously with parity. The first is whenUXM=pMt ÿUXX < 0, which is
really a strong form of (v) above. This guarantees that the MCC curve will
shift downward, which together with an upward shift in EMBC, will ensure
that the optimalu � will be higher. The other case is when MCC does not
shift at all, in which case the concavity ofV in Mt, which is behind the up-
ward shift of EMBC, is what drives higher contraceptive efficiency. Quite
importantly, a positive or negative shift of MCC requires thatp ut not be
zero, which is the case in Rosenzweig and Schultz (1985) and Newman
(1988), but not in any of the other studies.

For instance, Leung (1991) finds that contraceptive efficiency is always
increasing in parity (despite the assumption that children and market goods
are gross complements) and this result hinges entirely onV being concave
in Mt. The omission of explicit contraception costs in the budget con-
straint, which Leung argues is not critical to his analysis, is partly responsi-
ble for his unambiguous result. Thus, unless one includes the effects on
marginal contraception costs that channel through explicit costs of contra-
ception p ut one does not get a decreasing frequency/probability of births
with parity, nor any threshold effects, which have been detected in some
developing economies.15

Effects of variation in elapsed time without a birth.As shown by Newman
(1988) the optimal level of contraceptive efficiency decreases with the
amount of time that has passed without a birth. In his model, this happens
because with a fixed family sizeMt; DV ends up being a negative function
of time. The secular decline inDV , in turn, generates a downward drift in
the EMBC curve while the MCC curve is not affected by elapsed time
without a birth, resulting in a declining time path of optimal contraception
levels, ceteris paribus.The intuition is as follows: suppose the EMBC
curve was above the zero level in the preceding period, so that the
individual found it beneficial to prevent a birth then. If the individual was
lucky and no birth occurred in the previous period she can relax the control
a little in the current period, as the remaining amount of time she faces a
birth risk is shorter.16 In effect, the individual finds it optimal to maintain
an (almost) fixed “lifetime” hazard of an additional birth, which implies de-
creasing contraceptive vigilance as the end of the fertile cycle draws near.
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Newman’s result is a sharpening of an earlier conjecture made by Heck-
man and Willis (1976) which, in addition to the behavior suggested above,
also considered the possibility thatDV is constant over time, so that the
birth hazard remains constant in each period that a birth does not occur, but
the individual’s “lifetime” hazard actually falls over time. In this case, the
contraceptive response is invariant to elapsed time without a birth until the
periodic birth hazard finally results in an “accidental” birth. When this hap-
pens the individual will then raise contraceptive efficiency because family
size has increased, but contraceptive efficiency is kept steady until the next
birth occurs, etc. Newman’s solution, however, rules out this type of behav-
ior.

Hotz and Miller (1984) supply an additional reason for why a downward
drift in DV is likely. If, for a fixed family size, the requisite childrearing time
falls as children age, then as time elapses without a new birth, the capitalized
net benefits of contracepting, captured byDV; will fall naturally. This gener-
ally leads to a lowering of contraceptive efficiency levels and a higheruncon-
ditional birth hazard in each period. If, however, the individual faces a suffi-
ciently large positive risk of infertility even bevore menopause is reached, the
conditionalhazard (i.e., the hazard, as of the present timet) of a birth t� j
periods away may not vary positively with elapsed timej. Let q be the prob-
ability of becoming permanently sterile in a period. The probability, then, of
remaining fertile forj periods after the last birth is�1ÿ q�j. This is decreas-
ing in elapsed timej. Consequently, the chances of a birth occurring att� j
will be smaller the farther awayt� j is from t.

Effects of variations in natural fertility.Newman (1988) shows that an in-
crease in the natural probability of a birthp b (i.e., “fecundity”) tends to
raise the net birth probabilityp, even though the optimal response to a per-
ceived increase inp b is to raise contraceptive levelsut. This can be seen,
in a loose sense, in terms of the shifts in the MCC and EMBC curves, as
p b is a scale factor for EMBC. An increase inp b would tend to shift the
EMBC curve up without affecting the MCC curve. Now there is, however,
an additional implicit effect ofp b on EMBC, which happens via the term
DV . DV is implicitly a function of natural fertilityp b through future utility
and the future optimal contraceptive levels ofu �t (which depends onp b).
Intuitively, however, the effect of higherp b should be to raise future
contraceptive levels if it raises current contraception levels. But raising fu-
ture contraceptive levels is consistent with a rise inDV , rather than a fall
in DV. So the indirect effect on EMBC viaDV should only reinforce the
direct effect of a rise inp b.

Since the birth hazardp b (1–ut) rises, however, the implication is that
more fecund women will have more births, and, because of the birth-spac-
ing effect of increases in parity, will tend to cluster their births in the ear-
lier years of their fertile cycle. This creates issues of how one handles het-
erogeneity in natural fertility levels when one goes about estimating hazard
functions.

Rosenzweig and Schultz (1985) also find a theoretically positive contra-
ceptive response to an increase inp b, although in their framework a dis-
tinction is drawn between “permanent” or persistent shocks to natural fertil-
ity, and “transitory” ones. They find that the contraceptive response is larg-
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er if individuals know that the rise inp b will persist for many periods, and
is smaller if individuals are unsure about whether the rise inp b comes
from the permanent component of natural fertility or the transitory compo-
nent. This lack of information further confounds one’s ability to estimate
the size of the effects of heterogeneous fertility levels on the birth hazard.
The final effect on the birth hazard of a rise inp b, which would incorpo-
rate the optimal contraceptive response to this change, is much more com-
plicated than in Newman (1988).

Effects of variations in infant mortality risk.As the probability of an infant
death,p m), rises, this usually results in a lowernet birth probabilityp, giv-
en that morality risks are typically modelled as affecting current birth out-
comes only. The effect on net fertility should be the same as the case of a
fall in the probability of a birth,p b �1ÿ u�. That is, the EMBC curve falls
and contraceptive vigilance is relaxed. This type of response of increasing
the birth hazard in response to higher mortality risk is known ashoarding.

If mortality risks also apply to older children, then lower fertility control
resulting from child replacementmotives may also appear. This type of
birth hazard effect is distinct from hoarding in that it is a response to a real-
ized infant death rather than a response to an increase in the likelihood of a
death. Wolpin (1984) calculates that this effect is small in a sample of Ma-
laysian households – there a child death typically causes families to in-
crease the odds of a birth, but the increase in the expected number of chil-
dren thereafter is only 0.015 children. In a dynamic model of fertility con-
trol the reason for this (cf. Newman 1988) is quite intuitive: the response
of the optimal control levelu* is usually small when infant mortality rates
are high since the optimal level ofu* already takes into account the large
mortality risks. This effect is more difficult to explain, however, in a non-
dynamic context of lifetime family size decisions.

Effects of variations in income.Positive variations in incomeIt can come
either in the form of (i) an one-time increase in beginning period income,
(ii) a permanent increase in the level ofIt for all t, or (iii) keeping permanent
income levels the same, a shift in lifetime income profiles with higher in-
comes occurring in later years. The models considered do not generally dis-
tinguish between cases (i) and (ii), as the associated behavioral responses are
qualitatively the same and differ mostly in size, rather than in sign.

In the case of (i) or (ii) the one-time increase in income generally causes
the MCC curve to shift down and to cause fertility control levels to rise be-
cause of negative cross effects with the marginal utility of market goods
UX .17 The effect on EMBC, however, is not clear-cut and depends on param-
eters. Together with the shift of the MCC curve this results in an ambiguous
outcome on the level of contraceptive efficiencyu* and the potential for
threshold effects. In cases when the discount factor is large, the net birth prob-
ability p b is high, or childrearing costs are high, etc., most of the models pre-
dict a negative effect on EMBC also (Newman 1988; Leung 1991; and Pro-
position 3 in Hotz and Miller 1984). In developed economies where this effect
is expected to be large relative to the shift in MCC, the overall effect is a low-
ering of fertility control levels, implying larger expected family sizes in devel-
oped economies,ceteris paribus.
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In the case of more steeply rising income profiles (iii), it is the birth-
spacing/timing decision that is primarily affected. Heckman and Willis
(1976) argue that households will tend to delay and space births until later
in the life-cycle, when incomes have risen to levels most favorable for in-
creasing family size. In the context of the MCC and EMBC curves, what
one observes are joint shifts of the two curves in response to rising income,
leading to progressively lower levels of contraception levelsu*.18

Effects of variations in women’s wages.An increase inwt will have separate
effects on the marginal costs and benefits of fertility regulation. The effect on
MCC is such that fertility control goes up, due to an overall reduction in con-
traception costs. Lower marginal costs of contraception at all levels follow
because MCC depends (in part) on the foregone marginal utility of consump-
tion UX . This falls with increases in the level of consumptionX. Since con-
sumption levels typically rise with wage rates, contraception costs associated
with foregone consumption utility are smaller at all levels. Formally,

dMCC=dwt � UXX p ut � �H ÿHt� < 0 �provided �H ÿHt > 0�
so that the MCC curve shifts down.

The effect on the EMBC curve, however, depends on the relative size of
income and substitution effects that impact theDV component. How does a
rise awt affect the value of preventing an additional childDV? The direct
income effect of a relaxation of the budget constraint should lead individuals
to lower fertility control. The substitution effect, however, can be of either
sign. Without explicitly modelling the time costs of child-rearing, the sign
of the substitution effect depends on how strongly complementary children
are with both consumption goods and leisure time. If wages rise, individuals
shift away from leisure into consumption goods. If children are strongly com-
plementary with consumption, but not with leisure, individuals will want
more children, and will lower fertility control. In this case the income and
substitution effects on EMBC are reinforcing and cause a downward shift
in EMBC. The final effect on contraceptive levelsu* is ambiguous, depend-
ing on the size of the shift in EMBC relative to MCC.

If, on the other hand, children are strongly complementary with leisure
time but not with consumption, then the substitution effect on EMBC
might outweigh the income effect, and the EMBC curve could conceivably
shift upward, leading to an unambiguous increase in contraceptive effi-
ciencyu*. One model where this occurs is Hotz and Miller (1984). There,
an explicit model of the time costs of raising children is grafted onto the
basic framework (1)–(4). The result is that children and leisure time be-
come strongly complementary, and EMBC rises in response to higherwt.
Alongside the downward shift of MCC, this leads to a clear-cut increase in
contraceptive rigor following a rise in wages.

Effects of variations in childbearing and child maintenance costs.Finally,
the effects of changes in the costs of child-rearing and child-maintenance
have effects on fertility regulation not unlike those of the effects of changes
in women’s wage rates, since these are also relative price effects.
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After the first child, a rise inpMt should generally lead to an upward
shift in MCC as

dMCC=dpMt � UXX p ut Mt > 0 �provided Mt > 0�:
Once again, however, the final effect on contraceptive efficiencyu* is gener-
ally ambiguous, as generallyDV rises in response to higherpMt . (Usually,
higher maintenance costs of a larger family size not only have negative in-
come effects on household income, they usually also have negative substitu-
tion effects on the number of children born.) The rise inDV counters the ef-
fect of the shift in MCC.

2.3 Vijverberg’s (1984) model

Before turning to estimation issues, we pause to examine Vijverberg’s
(1984) model, which is a legitimate dynamic structural model, but one
which does not quite fit the above general framework. Vijverberg sets up a
continuous-time counterpart to our general model, but in his view the deci-
sion on whether to have a birth in a period consists of two separate deci-
sions: (i) how many children to have in the life-cycle, and (ii) given a cho-
sen family size, how should births be spread out over the life-cycle, taking
into account child maintenance costs, labor-market opportunities, and the
individual’s demand for leisure.

His model has some distinctive and interesting features, particularly in
the way the individual’s maximization is set up. Vijverberg divides up the
life-cycle of an individual into time periods or intervals. The first set of in-
tervals are simply the birth intervals, that is intervalt � 0 is the time inter-
val from marriage to the first birth, intervalt � 1 is the time interval be-
tween the first and second birth, etc. Once desired lifetime family sizeI
(assumed exogenous in Vijverberg’s analysis) is attained, the relevant time
intervals are no longer the birth intervals (there are no more). Rather, these
become the amount of time it takes to “wean away” children. For instance,
the �I � 1�st period is the interval between the last child’s arrival and the
weaning away of the first child, the�I � 2�nd interval is the period be-
tween the weaning of the first child and the weaning of the second, and so
on. There is, finally, a last period, which starts at the point at which theIth
child is weaned away, and ends with the end of the conjugal relationship.

Under Vijverberg’s theoretical specification, the individual is now imag-
ined to maximize in stages. First, taking asgiven and known the “switch-
points” (i.e., the demarcation points between time intervals as defined
above) the individual maximizes expected discounted utility inside each in-
terval and adds these up to get a life-cycle utility numberLU � that is
maximal, conditional on the known switchpoints. Next, the individual var-
ies the switchpoints (which, givenI, number 2I+1) and selects that combi-
nation which maximizesLU �. Vijverberg then suggests that a further max-
imization “stage” is possible in which the individual maximizes the value
of LU � by varying completed family sizeI.

Like Hotz and Miller (1984) Vijverberg examines the relationship between
fertility variates and the time-allocation and labor supply decisions of the
household. The key element of his empirical model is a “switchpoint equa-
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tion”, which guides the decision to accelerate or delay a birth. While certainly
interesting, the derivation of this equation and the signs of its parameters are
fairly involved. We omit this discussion so that we can focus on his empirical
findings.

Though his sample did not have a large proportion of women with mul-
tiple births, Vijverberg nonetheless found that higher wages tend to cause
individuals to delay births, as leisure time and children appear to be com-
plementary. Several other predictions of his model were also confirmed:
women appear to choose between a career and raising children, higher
child maintenance costs discourage births, higher (permanent) husband’s in-
come seems to encourage earlier births, and (contrary to Heckman and
Willis’ findings) a rising income profile for women (reflected in higherpre-
dictedfuture wages) tends to also cause earlier births!

2.4 Direct estimation of structural parameters

We now look at attempts and suggested methods for estimating the structur-
al parameters of a dynamic programming model like (1)– (4). The bases for
estimation are either or both of the value function (6) or the optimal policy
function (7). Because tractable closed-form solutions for (6) or (7) are un-
available, most approaches to estimation require augmenting maximum-
likelihood procedures with numerical solution of the dynamic program.

Continuous-valued choice variables.Though not exactly tractable, New-
man’s (1988) fertility model possesses a closed-form solution for the opti-
mal policy and value functions. An earlier paper, Newman and McCul-
lough (1984), did in fact estimate a similar-looking model using hazard
analysis methods as described in Sect. 3 below. However, as pointed out in
Newman (1988), the Newman-McCullough estimation was not fully struc-
tural, since it did not use the form of the hazard function with the optimal
contraceptive policy inserted. A more thorough application of hazard-rate
estimation to Newman’s unrestricted model, is not straightforward, and has
yet to be worked out.

Newman’s (1988) model is one in which the choice variable, contracep-
tive efficiency, is allowed to vary continuously over an interval. (In addi-
tion, his model is set up in continuous rather than discrete time.) In the
context of time-series models, some recent methods have been developed
for the structural estimation of dynamic programming problems in which
the choice variables are continuous (see Taylor and Uhlig 1990; Smith
1992). These new methods, however, are suitable for: (i) time-series rather
than panel or cross-sectional data, and (ii) discrete-time, rather than
continuous-time equations. Bridging the gap between these new methods
and the Newman model may be a fruitful area for future exploration. More-
over, with respect to (ii), one advantage is that the new estimation methods
do not require closed-form solutions, so that abandoning the continuous-
time formulation of Newman (1988) may preclude a closed-form solution
for (6) or (7) but will not compromise estimation.

Discrete choice models.In the realm of models of discrete fertility choice,
Rosenzweig and Schultz (1985) is an early model featuring a dynamic struc-
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ture a la (1)–(4). However in estimating the model they apply a time-aver-
aging procedure that renders the estimating model nondynamic. Moreover,
they also do not solve the dynamic program, numerically or analytically, or
obtain structural estimates of the parameters of the value function (6) or the
optimal policy function (7). Hotz and Miller (1988) assume linear approxima-
tions to the true optimal policy functions derived in Hotz and Miller (1984).
Since it is difficult to map back directly from the fitted linear coefficients to
the original structural parameters, their approach is essentially of the reduced-
form variety, and is discussed in Sect. 3 below.

Thus far Vijverberg (1984), Wolpin (1984), and, more recently, Hotz
and Miller (1993) are the only studies known to us which estimate structur-
al parameters of a dynamic model. Wolpin (1984) appears to be the precur-
sor in the fertility literature of the new breed of estimable dynamic structur-
al models. These, by necessity, combine numerical solution of the dynamic
program with maximum likelihood estimation of the structural parameters.
It is particularly instructive to examine his approach. Wolpin attempts esti-
mation of a parameter vector consisting of the utility function parameters,
the (assumed) fixed prices of a new birth and consumption, the time dis-
count factor, and other parameters of the optimal policy (7). Call this pa-
rameter vectora.

Estimation is based on the following decision rule: letV �Mt; t� be the
value function for the individual’s utility from periodt onward, given the
current value of the stateM (in this case, the stock of children). Letht be a
random shock to preferences now allowed to vary witht, and letPt be the
probability at t that an infant will survive into the next period. Under the
functional form ofU assumed by Wolpin (see Table 1), the decision to add
a child or not19 can be shown to depend upon the function:

Jt � Et �V �Mt � 1; t� 1� ÿ V �Mt; t� 1�� � Pt ht
� ÿEt �DV �Mt�1; t� 1�� � Pt ht; �9�

whereEt DV �Mt�1; t� 1� denotes the capitalized value (att+1) of pre-
venting a birth att.20 The second term on the right-hand side is the ex-
pected change in utility due to any preference shocks for more children.
The optimal decision rule for births is therefore:

N �t
� 1 iff Jt > 0
� 0 iff Jt � 0:

�
�10�

Optimal birthsN�t thus depend on the value of the functionJt, which in
turn depends on the parameters of the unknown value functions
V ��; t� 1�, the parameters of the conditional distribution function that
individuals use to calculate the conditional expectationEt, the survival
probabilityPt, and the preference shockht. Inspection of (9) and (10) re-
veals that the model follows a classic probit structure, except that one lacks
a closed-form expression forEt �DV �Mt�1; t� 1�� in terms of a. With
some additional assumptions, however, Wolpin demonstrates that this mod-
el is still estimable.
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Consider (9). Wolpin argues that there is always a unique value ofht,
denoting this critical valueh �t , for which the indicator functionJt will be
zero. This value is just

h �t � Et �DV �Mt�1; t� 1��=Pt: �11�
Assume that individuals know the random shockht at the time of the cur-
rent period fertility decision, but the analyst does not ever observeht. The
analyst cannot then observeJt directly. Current births’N�t , however, are
observable. To proceed Wolpin makes the classical probit assumption that
h�t is a normally distributed random variable. Then the probability that the
individual chooses a birth in periodt (conditional onMt� is

Pr �Nt � 1jMt� � 1ÿU �h�t =r�; �12�
wherer is the standard error ofh�t andU �x� is the value atx of the standard
normal cumulative density function. Analogously, the conditional probability
of no birth att is

Pr �Nt � 0jMt� � U �h�t =r�: �13�
Let X be the set of time periods where there is a birth, andXc its comple-
ment.For individual i, the likelihoodLi of any particular birth pattern is

Li �
Y
t2X

Pr �Nt � 1jMt�
Y
t2Xc

Pr �Nt � 0jMt�; �14�

where it is understood thatX; X c; Nt; Mt; and h
�
t all depend oni, and

thatLi, in general, is a function of parametersa via h�t . Given a sample of
I individuals, the sample likelihood is

L �
YI
i�1

Li; �15�

which is maximized with respect toa.
This the first part of the estimation methodology; the critical second

component of the methodology is the numerical solution of the dynamic
programming problem. This is where the main computational issues asso-
ciated with structural models generally arise.21 Maximizing L involves eval-
uatingh�t , which requires, by (11), evaluation of the conditional expectation
Et V �Mt�1; t� 1� at Mt�1 �Mt � 1 and Mt�1 �Mt. Let et�1 be next
period’s errors22 and f �et�1jMt� their conditional density. The conditional
expectation att of V �Mt�1; t� 1� is

Et V �Mt�1; t� 1� �
Z
e

V �Mt�1; t� 1� f �et�1jMt� det�1: �16�

On the face of it, given the current stateMt and a functional form forf ,
only one integration appears in (16), and the problem seems easy. But with
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no closed-form solution for the optimal fertility policy, the form of
V �Mt�1; t� 1� is not knownfor any of the realizations ofet�1. Indeed,
one must solve the entire dynamic program, which at the time required
backward solution from periodT, following Bellman’s recursion:

Et V �Mt�1; t� 1� � Et fmax �U ��; Mt� � bEt�1 V �Mt�2; t� 2��g
� Et fmax �U ��; Mt� � bEt�1 fmax U ��; Mt�1�
� bEt�2 �V �Mt�3; t� 3��g�g �17�

and so on untilt+j=T.
To illustrate the computational complexity involved, consider the fol-

lowing specialization of (17). Suppose that in (17)T � t� 3. Evaluat
ing Et�2 �V �Mt�3; t� 3�� is trivial and involves no integration because
in the last period V �Mt�3; t� 3� � U ��; Mt�3�. To evaluate
Et�1 �V �Mt�2; t� 2��, however, requires a nontrivial maximization which
involves an integration for each value of the stateMt�2. If the state variable
can take onG �Mt�2� � Gt�2 different values, one has to calculateGt�2 in-
tegrals. This done, one can take a step backward and solve for
Et V �Mt�1; t� 1�. But this requires the calculation ofGt�1 integrals, one
for each possible value of the stateMt�1. In total, solving this 3 period prob-
lem requiredG � Gt�1 � Gt�2 integrations.

Now imagine an extremely simple life-cycle problem whereT=21 peri-
ods, and that the state vectorMt consists solely of a family size variable.23

Conditional on today’s stateMt, next period’s stateMt�1 can assume two
different values,Mt or Mt � 1. This implies a total number of (21–
1)×2=40 integrations that must be calculated to solve for the value of
Et V �Mt � 1; t� 1� in the first line of (9). In addition, one also needs val-
ues forEt V �Mt; t� 1�, i.e., the expected value function without an extra
child. This implies another 40 integrations. In total, 80 integrations are
needed to solve the dynamic programof a single individualfor a single value
of h�t in (11).

Suppose one has a sample of 100 individuals. This implies that 8000 in-
tegrations must be performed in order to evaluate the value of the likeli-
hoodL at the initial setting of the parametersa. But maximizingL numeri-
cally requires iterating on the value ofa. At each step, i.e., at each new
trial value for a, one must perform 8000 integrations to get a new likeli-
hood valueL, so that convergence in 10 iterations implies 80,000 integra-
tions. Clearly, even for a very unrealistic model, the computational burden
can be quite formidable.24 These computational demands go up exponen-
tially as one increases the dimensionality of the state vectorMt, the num-
ber of time periods, the sample size, the dimensionality of the parameter
space, or the number of times one must obtain estimates ofa, say for pol-
icy experiments. This is essentially Bellman’s “curse of dimensionality.”

Recent advances in computational methods for discrete-choice models.
From the preceding sections it is evident that the principal trade-off in-
volved in structural estimation is that of computational simplicity vs. real-
ism of the model. This trade-off exists because tractable closed-form value
functions or optimal policy functions are unavailable for many interesting
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dynamic discrete- choice models. This requires numerical solutions of the
dynamic program instead, which leaves one open to the curse of dimen-
sionality. Some progress around this problem has been made, and we exam-
ine several recent proposals that we view as critical for this effort.

The first of the methodologies below relies on simplifying the calcula-
tion of the conditional expectation of the conditional expectation
Et V �Mt�1; t� 1�, which appears in the value function recursion (6) or
(17). Keane and Wolpin (1994) refer to this as the “EMAX” function, since
with k=1, ...,K alternative choices one can always write

Et V �Mt�1; t� 1� � Et max
k

Vk �Mt�1; t� 1�: �18�

Herek � 1; :::; K indexes the discrete-valued and mutually exclusive alter-
natives the individual chooses from. (In Wolpin’s model above,k takes two
values:k=0 if the individual chooses not to have a child andk=1 other-
wise.)Vk �Mt�1; t� 1� is the value of remaining lifetime utility as oft+1,
assuming the individual chooses alternativek at time t, and behaves opti-
mally thereafter. (In our version of Wolpin’s model,Vk(Mt+1; t+1)=
V(Mt+k; t+1).) Keane and Wolpin (1994) call thesek functions thealterna-
tive-specific value functions.These functions satisfy

Vk�Mt�1; t�1��Uk��;Mt�1��bEt�1V�Mt�2; t�2�; k�1; . . .;K : �19�
The first (and perhaps most well-known) of the solution methodologies for
(19) is Rust (1987). Rust achieved computational simplifications of the
EMAX function at the cost of some realism by assuming that: (i) indivi-
duals’ utility functions display additive separability of deterministic and sto-
chastic components, (ii) given the current level of observable state vari-
ables, the stochastic components are serially independent, (iii) the stochas-
tic components have a multivariate extreme value distribution. These given,
Rust’s two key results were: (i) the EMAX function has a closed-form solu-
tion, and (ii) the choice probabilities Pr [k|Mt] are multinomial logit. As
noted in Keane and Wolpin (1994), these results together allow the analyst
to avoid costly numerical integrations in solving the dynamic program, and
in performing the likelihood estimation.

These assumptions were quite restrictive and ruled out more general
models in which the errors display serial correlation or do not follow the
extreme value distribution. Since then, several methods have been proposed
to relax these restrictions. Rust (1994), in particular, reviews available solu-
tion methodologies for the EMAX function in the (realistic) case when the
underlying random process is Markovian. For Markovian processes, these
include the method of successive approximations, policy iteration methods,
or minimum weighted residual methods. He then lays out a general estima-
tion theory for estimates based on these approaches.

Rust also surveys recent results that have been obtained for more general
underlying random processes. For these, Monte Carlo integration is the natur-
al solution method, but it can be very computationally intensive. To lower
computational costs Keane and Wolpin (1994) and Geweke, Slonim, and Zar-
kin (1992) propose combining Monte Carlo integration with interpolations/
approximations of the value function (6) or the optimal policy function (7).
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Keane and Wolpin (1994) rely on the value function recursion (6) or (19)
as a basis for estimation, and try to find a form for the EMAX function of the
recursion that can be computed more easily,à la Rust (1987). However, in-
stead of deriving an exact form for EMAX, Keane and Wolpin propose ap-
proximating functions which are arbitrarily close to the true EMAX function
EtV(Mt+1; t+1). The idea is as follows: (i) first solve the dynamic program
backwards by simulation methods for a reasonably-sized subset of state
points f ~MtgTt�1; (ii) next, using the simulated values of the value function
V, fit by regression methods an approximating function to the EMAX func-
tion, (iii) use the fitted approximation function to interpolate for EMAX val-
ues on the remaining state points, (iv) having calculated all the relevant
EMAX values, calculate the value of likelihood function at a prespecified val-
ue ofa. Then iterate (i)–(iv) ona until the value of the likelihood function is
at a maximum.

The general form of the approximating function proposed by Keane and
Wolpin is

EMAX �Mt; t� �MAXE �Mt; t� � g �MAXE �Mt; t� ÿ �Vk� ; �20�

where MAXE(Mt, t )=maxk V̄k, V̄k=EtVk(Mt+1; t+1). The difference
MAXE(Mt, t)–V̄k insideg(·) is understood here to be ak-vector. The func-
tion g is a mapping fromRk to R++, that is, g is real-valued and always
positive. The intuition for this form is that the difference beween EMAX
and MAXE, which is always positive, will depend on how far apart are the
expectedVk’s from each other, and this distance is captured by the differ-
ence MAXE(Mt, t )–V̄k. By increasing the number of state space points
used (relative to the size of the state space) in estimating the interpolating
function, one can get arbitrarily good approximations to EMAX.

In Monte Carlo experiments, Keane and Wolpin (1994) find that the fol-
lowing form of g worked well:

EMAX �Mt; t� ÿMAXE �Mt; t� � d0 �
XK
j�1

d1j �MAXEÿ �Vj�

�
XK
j�1

d2j �MAXEÿ �Vj�1=2 �21�

By simulating the dynamic program at the subset of state pointsf ~MtgTt�1
one gets values for both MAXE andV̄j, as well as EMAX(Mt, t). These
values become the data for estimatingd0, d1j, d2j in (21) by linear regres-
sion methods. The fitted version of (21) serves as the interpolating function
for calculating EMAX(Mt, t) at the remaining state points. The computa-
tional gain is that it is much easier to evaluate MAXE or any of theV̄k’s
for the remaining state space points than it is to calculate EMAX.

Geweke et al. also propose an estimation-interpolation procedure that is
very similar in spirit to that of Keane and Wolpin. The main difference is
that, in this case, the authors work with approximations to the optimal pol-
icy function rather than the value functionV. In the Wolpin (1984) model,
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the optimal policy function is the step function (10) which depends on the
unknown functionJt=Et [V(Mt+1; t+1)–V(Mt; t+1)]+Ptht. In the context of
that example, Geweke et al. propose approximatingJt by the translated lo-
gistic of a polynomial-in-Mt:

~Jt � exp �r p �Mt�0 d�=�1� exp �r p �Mt�0 d�� ÿ 1
2
; �22�

where r p(Mt) is a vector of variables of the form
Qp
i�1 (Mit )

p so that
(r p(Mt)'d) is a pth-order polynomial function in the stateMt, with coeffi-
cientsd. They show that this approximation can be made arbitrarily good
by increasing the polynomial orderp. To estimated, the authors suggest
maximum likelihood estimation of the logit model

Pr �Nt � 1jM ÿ t� � exp �r p �Mt�0 d�=�1� exp �r p �Mt�0 d�� �23�

based onR simulations offMtgTt�1 and S possible values of the choice
variable. Estimateŝc can now be used to construct the approximate deci-
sion ruleJ

Ĵt � exp �r p �Mt�0d̂�=�1� exp �r p �Mt�0d̂�� ÿ 1
2
: �24�

Using this decision rule in place of the functionJt (evaluation of which re-
quires numerical integration) greatly facilitates further simulations ofMt, as
well as subsequent calculations of the values of the choice variables that
solve the dynamic program.

Rust (1995) proposes a more promising alternative to Keane-Wolpin
which is based on a random Bellman operator. His approach is appealing
in that it avoids the need for interpolation and repeated simulation, and in
fact breaks the exponential relationship between computation time and di-
mensionality of the state variable.

Perhaps even more promising is the simulation estimator of Hotz et al.
(1994), a technique which has the added advantage of being applicable to
more general random processes than Markovian ones. The key discovery of
Hotz et al. was that under fairly general conditions, one can “invert” non-
parametric estimates of conditional choice probabilities (i.e., the densities
f (et+1|Mt) in (16)) to get consistent estimates of the value function or
EMAX function in a normalizedform. This “nonparametrically estimated”
normalized value function can then be used to calculate consistent esti-
mates of the optimal decision rule or policy. The estimated decision rule,
along with the data on the model variables and the conditional probabilities
f, can be combined together in a simulation to trace out a “simulated” nor-
malized value function. Estimation of the parameter vectora is finally done
by choosinga to minimize the distance between points on the simulated
value function and the “nonparametrically estimated” value function. See
Rust (1994) for a more detailed review of this new technique.
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Empirical results.With regard to the empirical findings on fertility behavi-
or arising from structural models, we review the results in Wolpin (1984),
as this is more or less a representative fertility model. Other models have
very unique features and are interesting in their own right, but for space
considerations are only referenced here. For instance, Vijverberg (1984) has
a labor-supply and time-allocation decision in addition to the fertility
choice. Hotz and Miller (1993) study a model with imperfect fertility con-
trol by contraception, but with perfect fertility control by irreversible sterili-
zation. Necessarily, their results differ.

Wolpin applied his estimation strategy to a 188-household subsample of
households in the 1976 Malaysian Family Life Survey, which contains a ret-
rospective life history for each household, with birth, infant mortality, and
household income. Wolpin then matched these up with Malaysian state-
specific survival rates. For his application, Wolpin set the number of time per-
iods to 20, each period being an 18-month interval. Time period 1 was set to
the onset of individual’s fertile cycle (age 15 or marriage, whichever came
first), and at the last decision period (t=20) the fertile cycle was assumed
to end, with individuals assumed to live for 10 periods (15 years) thereafter.

After testing for and finding no strong evidence of unobservable in-
dividual heterogeneity at work, Wolpin estimated the parameters of his
quadratic utility function (see Table 1) and the parameters of its budget
constraint (consisting of cost parameters for child maintenance costs, and
parameters for the cost of new births). Point estimates of the utility func-
tion parameters were reasonable – at point estimates marginal utility was
positive and diminishing in family size and in the consumption good, and
time preference was about 0.09 per annum. A model check using a likeli-
hood ratio test revealed a significant enough difference between his mod-
el’s results and those from a model of random (Bernoulli) births. So the
Wolpin structure explained more than by pure chance.

Interestingly, Wolpin found that children and consumption goods tended to
be gross substitutes in utility. The higher the mother’s education levels, how-
ever, the lower was the utility of additional children. With respect to the cost
function parameters, Wolpin found large costs of new births, which followed
a decreasing then increasing pattern over the life-cycle. Maintenance costs,
however, appeared to be small and reasonable. With respect to income, a rise
in husband’s current income tended to have a large positive effect on the num-
ber of births, with larger income elasticities of a birth appearing at the higher
income extremes. The expected number of children ever born did not vary
much with the realization of an infant death, so estimated replacement behav-
ior was extremely small (an infant death inducing a rise in children ever born
by an average of only 0.015). However, the response to higher probabilities of
infant mortality risks was not small. Indeed, Wolpin found that a fall in the
mortaility probability by only 0.05 percentage points reduced the number
of children ever born by about one-quarter.

Regarding the implied comparative dynamics, Wolpin found that
individuals who over time expected rising incomes and falling mortality
risks tended to delay births. This finding is consistent with predictions of
Heckman and Willis (1976). Further, a lowering of mortality risks gener-
ated a tendency to cluster births in early periods of life, while a rising sur-
vival probability profile tended to delay childbearing.
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In short, Wolpin found: (i) small income effects; (ii) large and negative
education effects; (iii) very small positive replacement effects, and a non-
monotonic relationship between current birth probabilities and family size;
(iv) no unobservable heterogeneity among individuals, and (v) a negative
effect on fertility of higher mortality risk.

Of interest is a comparison of these five results against results that
could be obtained from a typical static reduced-form model. As a final ex-
ercise, Wolpin did a probit estimation of the birth likelihood taking family
size, current and expected income, current and expected infant survival
probabilities, and mother’s schooling as regressors. The comparative-static
results were as follows. Like structural estimates, the fitted probit regres-
sions implied: (i) negligible income effects on birth probabilities, and (ii)
negative education effects. Unlike the structural estimates, however, the
nonstructural probit model produced (iii) an insignificant or positive effect
of family size on current birth decisions, the positive effect suggesting (iv)
potentially unobserved heterogeneity; and (v) a positive effect on fertility
of higher mortality risk. Evidently, the two approaches see the relationship
between births and fertility variates differently. It remains an open question
as to which approach gives the more believable results.

The empirical properties of Wolpin’s (1984) model indicate that a rela-
tively simple version of the dynamic programming model (1)–(6) is cap-
able of replicating some fairly complex properties of birth history data.
While the computational complexity of the estimation strategy is an issue,
it is fair to ask how complex a comparable non-structural alternative would
have to be to replicate all the possible birth patterns in the data. Wolpin fig-
ured that, to do this, a comparable nonstructural econometric model would
require the estimation of around 400 parameters, instead of the 13 of his
structural model. Computationally, such a model would also be fairly de-
manding. Given the recent advancements in the computation of structural
estimates for even richer models, there appears to be an expanding empiri-
cal role for structural dynamic models. Nonetheless, dynamic reduced-form
models continue to be useful and are usually more tractable alternatives.
We now turn to these models.

3. Reduced-form models

In this section we consider the class of dynamic reduced-form fertility mod-
els, with focus on research by economists. As mentioned in the introduc-
tion, reduced-form models may have a basis in some dynamic program-
ming problems but do not rely heavily on that structure for the specifica-
tion of estimating equations. Specification of the estimating relationships,
including stochastic elements, is often made in conformity with some tract-
able econometric framework; these models typically use the underlying the-
ory to posit variables and possible error structures.

In most of these studies the main variable of interest is the birth likeli-
hood. When this variable is regarded as continuously-varying, practically
all reduced-form dynamic fertility models adopt a hazard-rate approach to
estimation. When the birth probability (and the contraceptive efficiency)
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takes on discrete (dichotomous) values, the empirical methodology of Hotz
and Miller (1988) is a viable alternative.

3.1 Hazard-rate analysis (Heckman and Walker, etc.)

Formulation and estimation.Hazard-rate analysis, also often called dura-
tion or event history analsys, is proving useful in a variety of problems in
economics.25 Indeed, most economic research on timing and spacing of
births has used the hazard approach. Specifically, this framework is fol-
lowed in Newman (1983); Heckman et al. (1985); Newman and McCul-
lough (1984); Heckman and Walker (1987, 1989, 1990a,b, 1991); and Da-
vid and Mroz (1989). In this approach, women are assumed to be continu-
ously subject to the risk of a birth. The risk is given by the hazard rate, de-
fined as the conditional probability of a birth at timet given no birth imme-
diately beforet. The hazard rate may vary randomly across the population
(referred to asheterogeneity) and may vary over time spent in a birth inter-
val (referred to asduration dependence).

In a series of papers, Heckman and Walker present semiparametric multi-
spell fertility models. Their models are first discussed here because they are
more general than others. It will become clear that models used in Newman
(1983), Heckman et al. (1985), and Newman and McCullough (1984) can be
considered as special cases. Following the notation of Heckman and Walker, a
woman’s birth history is assumed to evolve in the following way. The woman
becomes at risk for the first birth at calendar times=0. Define a finite-state
continuous-time birth process {Y(s), s>0}, Y(s) ∈ C, where the set of possi-
ble attained birth states (parities) is finite (C={0, 1, 2, . . ., c}, c<?). An ele-
ment ofC defines the number of children born.Y(s) is parity attained ats.
Transitions occur on or afters=0. Child mortality is not considered.

The basic component for multistage duration models is the conditional
hazard. DefineH (s) as the relevant conditioning set at times, which may
include anticipitations about the future formed at times and relevant past
information up to times (previous birth intervals, etc.).

Define the potential durations byT1, . . . ; Tc. If a woman becomes at
risk for the jth birth at times (j–1), the conditional hazard at durationtj is
defined to be

hj �tjjH �s �j ÿ 1� � tj�� : �25�
Assuming thatTj is absolutely continuous givenH, we may integrate (25)
to find the survivor function

S �tjjH �s �j ÿ 1� � tj�� � exp ÿ
Ztj
0

hj �ujH �s �j ÿ 1� � u�� du
24 35 : �26�

The assumption of absolute continuity rules out conditioning on variables
that perfectly predict the fertility outcome.

A woman at risk for a first birth ats=0 continues childless a random
length of time governed by the survivor function
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Pr �T1> t1jH �s �0��t1�� � exp ÿ
Zt1
0

hj�ujH�s�kÿ1��u�� du
24 35: �27�

At time s (1), the woman conceives and moves to the stateY(s)=1. In the
general case,Y(s)=k–1 for s (k–1)≤s<s (k) and Tk=s (k)–s (k–1) is gov-
erned by the conditional survivor function

Pr �Tk> tkjH�s�kÿ1��tk���exp ÿ
Ztk
0

hk�ujH�s�kÿ1��u�� du
24 35: �28�

The conditional density function of durationSk= tk is given by the product
of the hazard and survivor functions

g�tkjH�s�kÿ1��tk�� �hk�tkjH�s�kÿ1��tk���S�tkjH�s�kÿ1��tk�� : �29�
Modelling unobserved heterogeneity (e.g., fecundity) is necessary be-

cause it is virtually impossible to measure all important covariates appropri-
ately.26 Recent work shows the importance of controlling for heterogeneity
in hazard models (Heckman and Walker 1985; Heckman et al. 1985; Trus-
sell and Richards 1985; Manton et al. 1986; Struthers and Kalbfleisch
1986; Sturm and Zhang 1993; Zhang and Sturm 1994). Heckman and
Walker distinguish two types of unobservables: (i) those that are known to
the woman being studied but unknown to the researcher, and (ii) those that
are not known to both the woman and the researcher. They point out that
the latter type of heterogeneity can produce dynamics of its own if the
agents being studied learn about their unobservables over the life cycle,
and provides the rationale for including lagged birth intervals as explana-
tory variables as in Rodriguez et al. (1984).

Heckman and Walker point out that the study of heterogeneity in multi-
stage duration models is in its infancy. The few studies that include unob-
served heterogeneity consider the first type and universally assume the het-
erogeneity can be represented by a scalar random variableh which is time-
invariant with distributionM (h). Densities are now defined conditional on
H (s) andh:

g �tkjH�s�kÿ 1� � tk�; h� � hk�tkjH�s�kÿ 1� � tk�; h�
� S�tkjH�s�kÿ 1� � tk�; h�� : �30�

The conditional density ofT1, . . . ; Tc givenH�s�0� �Pc
i�1 ti� is then

g t1; . . . ; tcjH s�0��
Xc
i�1

ti

 !" #
�
Z
h

Yc
k�1

g �tkjH�s�kÿ 1� � tk�; h�dM �h�
�31�

whereh is the support ofh, i.e., its domain of definition.
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In their empirical specification, Heckman and Walker approximate the
jth conditional hazard using the following functional form

hj�tjjH�s�j ÿ 1� � tj�; h� � exp c0j �
XKj
k�1

ckj
t
kkj
j ÿ 1
kkj

 !
� Z bj � fjh

" #
;

�32�

whereZ includes all observed regressors possibly including durations from
previous spells and spline functions of current durations. Parity dependence
is incorporated by allowing coefficients to bear parity-specific subscripts.

An important feature of hazard specification (32) is that it encompasses
a variety of widely-used models. Settingbj =0, Kj =1, and fj =0, (32)
specializes to a Weibull model ifk1j =0, to a Gompertz hazard ifk1j =1,
and to a quadratic model ifKj =2 andk1j =1 andk2j =2. It becomes an ex-
ponential model ifckj=0 for all k. This general framework allows us to use
likelihood ratio tests to choose among many conventional competing speci-
fications. Specification (32) also extends previous duration models by al-
lowing for general time-varying covariates and by introducing unobserved
heterogeneity that is correlated across spells.27 Permitting thefj to vary by
parity j allows the scalar unobservable to play a different role in different
spells.

The conventional way to include unobserved heterogeneity is to assume
a parametric function forM (h), as in Newman and McCullough (1984).
Such procedures have been called into question because of the sensitivity
of the estimated parameters to choices of functional forms for the hazard
and heterogeneity. Heckman and Singer (1984) show thatM (h) can be esti-
mated nonparametrically. However, Trussell and Richards (1985) demon-
strate nonrobustness of estimates to choices of functional forms for hazard
even whenM (h) is estimated nonparametrically. These sensitivity results
are widely cited as “discouraging” evidence on the value of incorporating
unobserved heterogeneity into hazard models. Montgomery and Trussell
(1985, p. 30) capture this negative mood in the demographic literature:

This sensitivity to the choice of functional forms of the distribution of
unobservables or of the hazard leaves us profoundly depressed about
where next to proceed. We fear that the advances in statistical technique
have far outpaced our ability to collect data and our understanding of
the behavioral and biological processes of interest.

Heckman and Walker (1987) argue that missing from the pessimistic as-
sessments of models with unobservables is any discussion of the fit of
alternative models to the data. They demonstrate that, in contrast to the pre-
sumption in the demographic literature that preferred alternative models fit
the data equally well, few models can fit the data at all. Because many
models are non-nested, we confront the problem of non-nested model selec-
tion when seeking a “best” model. Heckman and Walker (1990 a, 1991)
propose and describe four widely used criteria: (i) the Leamer-Schwarz cri-
terion that penalizes likelihood for parametric estimation; (ii) the criterion
of picking a model on the basis of coefficient stability across cohorts; (iii)
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the effectiveness of fitted micro-models in predicting aggregate time series;
and (iv) a criterion widely used by demographers – predicting fertility at-
tained (parity) at different ages.

In Heckman and Walker (1987, 1990 a, b, 1991) they estimateM (h) by
the nonparametric maximum likelihood (NPMLE) procedure of Heckman
and Singer (1984). This procedure approximates any distribution functions
of unobservables with a finite mixing distribution, {pi, hi} i = 1, wherepi is
the weight placed onhi. The NPMLE procedure estimates support points
hi, i =1,...,I and the weight placed on the support points

pi; i � 1; :::; I where
XI
i�1

pi � 1
 !

along with other parametersof the model.

Finally, Heckman and Walker’s empirical framework allows for period-
specific stopping behavior. The survivor function for thejth birth is

Sj �tjjH �s �j ÿ 1� � tj�; h� � P�jÿ1�

� �1ÿ P�jÿ1�� exp ÿ
Ztj
0

hj �ujH �s �j ÿ 1� � u�; h� du
24 35; �33�

whereP(j–1) is the probability that a woman withj–1 children is never at
risk to have thejth birth and thus captures permanent biological or behav-
ioral sterility (i.e. a parity-specific mover-stayer mixture distribution).28 The
contribution to sample likelihood of a woman with fertility history
T1= t1, T2= t2,...,Tk= tk and an incompletek+1 spell of lengtht̄k+1 is

XI
j�1

Yk
j�1
ÿ @ ln Sj �tjjH �s �j ÿ 1� � tj�; hi�

@tj

� �
� Sj �tjjH �s �j ÿ 1� � tj�; hi�

� Sk�1 ��tk�1jH �s �j ÿ 1� � tj�; hi� pi : �34�

A general multistate computer program, CTM, applicable to multistate com-
peting risks models much more general than a birth process, is used to esti-
mate the model. The details of the computer program are in Yi, Walker,
and Honore (1987) and Heckman and Walker (1987).

Other formulations can be seen as special cases of Heckman and Walker’s
formulation. Newman and McCulloch (1984) model duration dependence as a
three point linear spline and assume a parametric Gamma distribution for un-
observed heterogeneity forM (h). Heckman et al. (1985) is almost identical to
the general formulation of Heckman and Walker, except that the former study
models duration dependence as a quadratic polynomial and the latter uses a
general Box-Cox transformation. All these studies allow for time-varying
covariates. Allowing for period-specific stopping behavior is an unique fea-
ture of the general Heckman-Walker formulation.

David and Mroz’s (1989) empirical model is similar to the general Heck-
man-Walker framework in several aspects. David and Mroz model unob-
served heterogeneity and period-specific stopping behavior (called as second-
ary sterility) as in Heckman and Walker. However, there are several differ-
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ences in specifications. Child mortality is ignored in Heckman and Walker,
but is modeled as an independent random censoring of the birth process. In
another word, they define the duration as the minimum of the waiting time
to a live birth and the waiting time to the death of the youngest child. Unlike
Heckman and Walker, David and Mroz assume a log-logistic function for the
conditional hazard. (See Kalbfleisch and Prentice (1980) for a discussion of
the relation between log-logistic functions and other functions such as Wei-
bull.) As a minor difference, David and Mroz allow the weight placed on
the support points (pi, i =1,...,I) to be determined by a multinominal logistic
function of some observable characteristics.

Empirical results.Table 2 summarizes the empirical results in Newman and
McCullouch (1984), Heckman et al. (1985), David and Mroz (1989), Heck-
man and Walker (1990 a, b, 1991), and Tasiran (1995). Newman and
McCullouch estimated their hazard model with Gamma heterogeneity for
birth history up to age 30 for four cohorts of women from ages 30 to 49 at
five-year intervals. It is found that higher female education delays the first
birth of all birth cohorts and delays subsequent births of all cohorts except
the birth cohort 40–44.29 While the education of the male is not (statisti-
cally) significant in determining the risk of the first birth, it is important in
delaying subsequent births. Women in younger cohorts living in areas with
higher child mortality tend to have the first and subsequent births earlier.
The family planning variable is never significant at a conventional level.

Heckman et al. find that some “stylized facts” of the demographic litera-
ture are not robust to unobserved heterogeneity. Rodriguez et al. (1984)
suggest that age at marriage and/or the entry into parenthood are the crucial
determinant of life cycle fertility and that variation in completed fertility
across the population comes primarily from these initial conditions, and
that subsequent childbearing is largely determined by initial events and by
previous birth intervals. Using the Swedish data, Heckman et al. (1985)
find that, in models that do not control for heterogeneity, the longer a pre-
ceding birth interval the longer the subsequent one, exhibiting the “engine
of fertility” phenomenon noted by demographers.

Controlling for heterogeneity, the “well-noted empirical regularity” either
vanishes or reverses in sign. For a sample of married women, it vanishes en-
tirely. Furthermore, for all women and controlling for marital status as a cov-
ariate, inclusion of heterogeneity produces a “reverse engine of fertility” phe-
nomenon: the longer the preceding birth interval the shorter the subsequent
one. For the married women sample, the importance of age at marriage on
the spacing of births is considerably reduced in size and statistical signifi-
cance. For the sample of all women, controlling for heterogeneity eliminates
the effect of age at marriage on all but the final birth transition.

Emphasizing the roles of female wages and male income, Heckman and
Walker (1990 a, b, 1991) find that female wages delay times to all concep-
tions and reduce total conception. This result is shown to be robust to a vari-
ety of empirical specifications. Higher male income reduces times to concep-
tions (strongest effect for the first birth) and increases total conceptions when
marital status is not controlled for. The estimated male income effect is weak-
er when marital status is included as a separate regressor. Somewhat surpris-
ingly, unobserved heterogeneity correlated across spells is not an important
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feature of modern Swedish fertility data.30 In all models in which nonzero
duration dependence is permitted, they find positive duration dependence.
Their major finding is that a neoclassical model of fertility outperforms demo-
graphic models which exclude wage and income variables in terms of several
model selection criteria.

As Heckman and Walker point out, the most controversial aspect of
their study is its use of cohort average wages as proxies for missing micro
wages. While the use of average wages almost eliminates the possibility of
simultaneous equation bias in estimating the relation between wages and
fertility, it introduces an errors-in-variables problem and a spurious relation-
ship between strongly time-trended variables (i.e., wages and fertility).
Heckman and Walker demonstrate that the results on female wages and
male income are robust to those considerations.

Heckman and Walker (1989) use estimates of individual fertility dynamics
obtained in Heckman and Walker (1990a,b, 1991) to forecast aggregate an-
nual birth rates for each cohort. They examine the ability of microdynamic
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Table 2. Empirical results from reduced-form models

Authors (Year) Emphasized
(or primary)
covariates

Other or additional
covariates

Dataset

Heckman, Hotz and
Walker (1985)

Age at marriage,
previous birth
intervals

Current spell duration,
labor participation,
schooling, urban, white-
collar, attended univer-
sity

1981 Swedish
Fertility Survey

Heckman and Walker
(1990a,b, 1991)

Female wage and
male income

Current spell duration,
urban, white-collar,
age, time trend, at-
tended university,
ever-married, unem-
ployment rate, policy
measures

1981 Swedish
Fertility Survey

Tasiran (1995) Female wage, male
income, female
schooling, and
working experience

Current spell duration,
urban, white, age at
union start, birth
cohorts, ever-married

1981 Swedish Fertil-
ity Survey, Swedish
1984 and 1988
Household Market
and Non-Market
Activities, 1985–
1988 PSID

Newman and
McCulloch (1984)

Male and female
years of schooling

Female’s birth year,
child mortality, family
planning measure

1976 Costa Rica
National Fertility
Survey

David and Mroz (1989) Age of husband
and wife, previous
child’s sex, number
of boys and girls
alive, number of
boys and girls alive
aged 10 or older

Number of prior
deaths of boys and
girls before the 3rd
month, number of
prior deaths of boys
and girls aged 3–11
months, village
mortality

Rural France data
relating to the mar-
riage cohorts of
1749–1789



models to account for time series variation in cohort fertility. They find that,
for most Swedish women, their estimated models pass some important time
series specification tests. They also find that their aggregated neoclassical mi-
crodynamic models explain the time series better, in the sense of mean
squared error of forecast, than do time series regressions.

Building on Heckman and Walker’s work, Tasiran (1995) provides new
evidence for the role of female wages and male income in the fertility of
Swedish women. Tasiran modified the macro wage and income series used
by Heckman and Walker, and made use of micro wage and income data in
individual income-tax records from Statistics Sweden. He constructed two
combined macro-micro wage series. For the first combined series, he used
Heckman and Walker’s series for the years 1948–1967 and 1981, and for
the period 1968–1980 the micro wage data derived from income-tax re-
cords. For the second combined series he used wages of salespersons and
shop assistants for the years 1948–1967 and 1981, and for the period
1968–1980 the micro wage data. He also included a variable for women’s
years of working experience.

Tasiran reports that the Heckman-Walker results of a negative wage ef-
fect and a positive income effect do not hold generally. The sign and statis-
tical significance of female wages and male income are sensitive to parity
level, measurement of wages and income, controlling for unobserved het-
erogeneity, inclusion of working experience, and data sets. Tasiran’s main
conclusion is that the effects of female and income are not robust and are
much weaker than Heckman-Walker indicated. He also finds that years of
female schooling and of working experience significantly delays the first
birth but have weaker effects on higher births.

In a reply to Tasiran (1995), Walker (1996) criticizes Tasiran’s casual
use of micro wages. Specifically, Walker points out that a more careful
analysis would have addressed four issues on the use of individual wages.
First, he argues that a simple merging of aggregate and micro data is inap-
propriate. Second, the issue of wages of nonworking women was not ad-
dressed by Tasiran. Third (and most importantly, according to Walker), in-
adequate attention was paid to measurement error in individual wages. Fi-
nally, exogeneity of wages and selection bias should be addressed.

The main finding of Walker’s thoughtful analysis is that there is sub-
stantial measurement error in individual wages in birth years. Controlling
for measurement error by dropping birth year observations, the selection ef-
fect appears to be minimal. Estimates from a wage regression (excluding
birth years observations) were then used to backcast female wages before
1968 and to fill in wages for nonworking women. As Walker finds,

For the first transition the estimated wage effects are roughly two-thirds
the magnitude of the effects estimated by aggregate wages. Even in the
higher parities, the estimated wage effects are quantitatively large and
statistically significant. Although the cohort drift which was present in
the estimates obtained from aggregate data is not present, the statistical
significance and importance remain. (Walker 1996)
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Replying to Walker’s comment, Tasiran (1996) writes

The results in rows 5 of Walker’s Table 3 is an excellent illustration of
the sensitivity of the estimates of the wage rate effects on fertility and
that the first Heckman and Walker estimates were on the high side.
Comparing rows 5 with rows 3, 11 out of 12 estimates in rows 5 are
less in absolute value than the corresponding estimates in rows 3 and
several are substantially lower.

Walker’s analysis of the individual wages certainly highlights the impor-
tance of careful and thoughtful work on micro data. His findings also lend
support for the results of Heckman and Walker obtained by aggregate data
in wages. The debate between Walker and Tasiran, however, is valuable, as
it illuminates the complicated fertility dynamics in Sweden. The central
problem is a lack of high quality micro wage data. Given this problem, it
is not surprising to find different results when individual wages are con-
structed and handled differently. The issue of robustness of results should
be dealt with carefully. When magnitude differs across different wage se-
ries, Tasiran appears to interpret the results to be sensitive. Walker, on the
other hand, believes that as long as statistical significance is preserved, the
results are robust. Interpreted with care, Walker’s new results show that the
original Heckman-Walker findings are, to some extent, robust.

We believe that there are still some issues that require further investiga-
tion. First, Walker’s analysis shows that there is substantial measurement
error in wages for birth year observations. The question is: why? Tasiran
(1996) thinks that the measurement error is mainly in working hours which
he obtained from Heckman and Walker. Rather than simply deleting birth
years observations (when estimating the wage regression) and thus losing
useful information, a reexamination of the data on earnings and working
hours might be necessary to determine the sources of, and possible reme-
dies for, measurement errors in micro wages.

Second, Walker (1996) also used the female wage series for shop assis-
tants and found the wage effects were small for younger cohorts. Walker
argues that the inability to recover statistically significant wage effects for
the youngest cohorts stems from the flatter age-profile of wages during a
period of low wage growth. Specifically, he mentions that the observed de-
cline in the wage dispersion during the 1970s reflects the compression aris-
ing from the adoption of wage solidarity. If that was the case, how can the
use of aggregate macro wages show statistically significant wage effects in
Heckman and Walker? That would be possible if there was more variation
in macro wages than in female shop assistant wages. But why should the
slow-wage-growthcum flatter-age-profile argument apply to female shop
assistants, but not to macro wages? Therefore it appears necessary to inves-
tigate whether the age-profile of wages is flatter for shop assistants than for
other workers.

David and Mroz (1989) estimate their model using data from rural France
relating to the marriage cohorts of 1749–1789, a population that is supposed
by many demographers to be identified with “natural fertility”, namely, the
absence of parity dependence in age-specific marital fertility rates. Their cen-
tral concern is to re-examine this widespread “natural fertility” supposition
with suitable econometric methods. They obtain strong evidence against the
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“natural fertility” characterization of the demographic regime that prevailed in
rural France immediately before the Revolution of 1789.

There are clear indications that marital fertility rates were being regu-
lated in congruence with the differential valuations placed upon children,
according to their gender and age. In particular, controlling for the total
numbers of young children and old children, the presence of a larger num-
ber of young girls leads to a lower hazard rate, but that of a larger number
of young boys has no such effect. A larger number of older children, re-
gardless of gender, reduces the hazard rate. They attribute the differential
response by age of children to risk aversion and the greater risk of losing a
younger boy to mortality. Village mortality is found to have a positive ef-
fect on the hazard, suggesting the presence of hoarding behavior in fertility.
They also find strong replacement effects to the deaths of boys (especially
boys aged two months or above). To the contrary, there is weak evidence
that the death of young girls reduces the hazard rate. They argue that these
results suggest the endogeneity of child mortality.

3.2 Quasi-maximum likelihood estimates of linear decision rules

When the contraceptive efficiency variable takes on a few discrete values
(sayu or ū), an estimation strategy can be based on binary linear decision
rules that approximate the structural model’s exact optimality conditions.
As the exact dynamic decision rules are generally nonlinear and may lack
closed-forms, this approach offers a reasonable operationalization of an in-
tractable theoretical specification. In what follows we outline a much sim-
plified version of an approach due to Hotz and Miller (1988). Our simplifi-
cations highlight their basic ideas as applied to the contraceptive decision
rule only. For a more complete model that features joint estimation with la-
bor supply and child care decision rules, the interested reader may consult
the original paper.

Formulation and estimation.Hotz and Miller (1988) assume that the con-
traceptive decisions and the birth hazard are guided by the values of an in-
dex functionqit that is linear in several underlying causal variables. Let
ait =pM

it Mit be the current expenditure of householdi at time t for a family
size ofMit. Further, letcit be the amount of time committed to child-rearing
in periodt. Noting thatt indexes the mother’s age and that the mother’s en-
tire birth history is given by the sequence of binary numbers {Nit–k}

t
k= 1,

Hotz and Miller now specifyqit as

qit � v0 � v1Iit � v2cit � v3ait �
Xt
k�1

v4kNitÿk � v5ti � v6hi � eit; �35�

wherevj, j =1,...,6 are linear coefficients, some of which can be separately
identified and estimated. The level of the indexqit is thus assumed to be
function of income Iit, maternal time inputscit, expenditure on market
goodsait, the mother’s birth history, the mother’s aget, plus a set of fixed
effects parametershi, and an erroreit assumedN(0,r2). This index deter-
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mines the level of the birth hazard, which is a dichotomous variable in
Hotz and Miller’s (1988) framework:

pit
� �p if qit � 0
� p if qit < 0;

�
�36�

where�p and p are, respectively, the upper and lower values of the birth ha-
zard.31

Hotz and Miller posit that total expenditureait, and total maternal care
time cit are linear sums of the mother’s birth history {Nit–k}

t
k= 1:

ait �
Xt
k�1

akNitÿk �37�

cit �
Xt
k�1

ckNitÿk: �38�

Using (37)–(38), one can rewrite the index function as

qit�~v0 � ~v1 Iit�
Xt
k�1
�~v2 ck�~v3 ak�~v4k�Nitÿk�~v5 ti�~v6 hi�~eit; �39�

where~eit is now aN (0,1) error and the parameter vectorṽ is just the nor-
malization ~v � ���

r
p
v, where v is the vector of identifiable parameters

(v0, v1, {v2ck+v3ak+v4k}
t
k= 1, v5, v6) in the original index function (35).

This last equation is now estimable. One, however, does not observe the
actual levels of the indexqit; what is observable is the sample of individual
birth histories, and births could have happened whether behavior put an
individual at the low birth riskp or the high birth risk�p. Thus, a probit-
style approach that takes into account both possibilities is called for. To
this end, define the probability of observing theith individual’s birth se-
quence over the sample period, conditional on period incomes, previous
births, and the fixed effectshi. This isY

t

Pr �NitjIit; fNitÿkgtk�1; hi�

�
Y
t

fNit � p� ��pÿ p�Pr �qit � 0jIit ; fNitÿkgtk�1; hi��

� �1ÿNit� �1ÿ pÿ ��pÿ p�Pr �qit � 0jIit; fNitÿkgtk�1; hi��g
�
Y
t

f�1ÿNit� � �2Nit ÿ 1� �p� ��pÿ p�U �~vit��g ; �40�

whereU is the standard normal cumulative distribution function and the
product

Q
t ranges over the entire lifetime of theith individual, that ist

goes fromti to t̄i. Some explanation is necessary for the above derivations.
In the second line of (40), the first term applies whenNit =1, that is, a birth
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occurs in periodt. The (conditional) likelihood of a birth having taken
place att is the sum of the baseline risk of a birthp (which the individual
is exposed to regardless of the level of contraceptive efficiency) and the ad-
ditional birth risk when the minimal level of contraception is employed.
This additional risk is just the term��pÿ p�Pr �qit � 0jIit; fNitÿkgtk�1 hi�:
Finally, the second component of the second line of (40) applies when
Nit =0, that is no birth occurs. The probability of this event is just one
minus the probability of a birth, which is the first expression in braces in
(40). In the absence of any other equations to be jointly estimated, (the log
of) equation (40) is the (log) likelihood function for the birth sample, and
this can be estimated by a standard maximum-likelihood procedure.

In the case when there is more than one equation to be estimated,
things become more complicated. In the original Hotz and Miller (1988)
paper, for instance, the index function (39) is only one equation that needs
to be estimated alongside similar linear decision rules for childcare time
and the mother’s labor market participation. As Hotz and Miller note, this
creates two problems. First, since the system of equations generally pos-
sesses a non-recursive covariance structure, full-information maximum like-
lihood (FIML) estimation will be computationally burdensome, as it in-
volves repeated calculation of bivariate (or trivariate) distribution functions
involving almost all of the model’s parameters. Secondly, since the amount
of childcare time enters into both the labor supply decision rule and the in-
dex function, there are now cross-equation restrictions on the parameters of
the latter two, which one would have to either impose in the estimations or
test for.

In the face of these two problems of FIML estimation, Hotz and Miller
(1988) propose the following alternative estimator. LetLi1 �p; �p; ~v; hi� de-
note the log of (40) given the model parameters�p; �p; ~v; hi�; and suppose
one could define similarquasi-likelihood functionsLip for the otherp deci-
sion rules for householdi. Now form the followingquasi-likelihood function

Q �p; �p; ~v; ~v�; hi� �
X
i

Qi �p; �p; ~v; ~v�; hi�

�
X
i

Li1�p; �p; ~v; hi��
X
p

Lip�p; �p; ~v; ~v�; hi�
" #

; �41�

where ṽ+ are any extra parameters appearing in thep equationsLp. Given
estimates for the fixed effects{hi}, denote the remaining parameters inLi1
as z1=�p; �p; ~v�; and the remaining parameters inLip as z=(z1, ṽ+). Given
{hi}, the parameter estimates that maximize the quasi-likelihood functionQ
are the solutions ofX

i

mi�z; hi� �
X
i

@Li1�z1; hi�=@z1�
X
i

X
p

Lip�z; hi�=@z� 0 : �42�

Equation (42) suggests that, given {hi}, a consistent estimateẑ would have
to make

P
i mi �z; hi� as close to zero as possible. Such an estimate can be

found by minimizing the following average of thescore functions mi (z, hi):
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JI � �1=I�
X
i

mi �z; hi�
" #0

WI �1=I�
X
i

mi �z; hi�
" #

: �43�

The consistent estimateẑ of z based on (43), isẑ=argminJI. Essentially,ẑ
is the generalized method of moments (GMM) estimator for the set ofI
orthogonality conditionsmi (z, hi)=0 (Hansen 1982). HereI is the number
of individuals in the sample, andWI is a symmetric, positive definite
weighting matrix that converges, with largeI, to a limit matrix W. WI is
used to construct an estimated asymptotic covariance matrix forz.

As Hotz and Miller (1988) show, this quasi-maximum likelihood proce-
dure avoids the computational difficulties of FIML on the joint system of
decision rules, since it requires only calculation of an univariate normal dis-
tribution function. Further, one can impose the cross-equation parameter re-
strictions directly in the definition of the score functionsmi prior to GMM
estimation. One can use (43) to getẑ given an initial estimatefĥig. Using
(43) again, one can then obtain a new estimate offĥig given the first-
round estimateẑ, and continue to iterate on the estimate of {hi} and z. The
only issue that remains is obtaining initial estimates of the fixed effects
{hi}. Hotz and Miller (1988) obtain initial fixed effects estimates by maxi-
mizing the sum of the other quasi-log-likelihoods,

P
i

P
p Lip �z; hi� with

no parametric restrictions. Thefĥig were then used in (43) to estimatez
imposing all cross-equation parameter restrictions.

4. Other models and approaches

To close our survey, we briefly discuss other dynamic fertility models
which we could not neatly categorize as “structural” or “reduced-form”.
Generally, this was because they were either (i) not strongly motivated by a
theoretical dynamic model, or (ii) not concerned with the estimation of the
model’s dynamic equationsper se. At some level, however, this was a mat-
ter of degree rather than a hard-and-fast rule of categorization.

Some early research treats current fertility as a stock-adjustment process
whereby individuals attempt to achieve some desired level of completed
fertility (Lee 1981; Schultz 1980). Current fertility is modelled as a func-
tion of the gap between desired lifetime family size and current family size,
among other things. This induces a lag structure for fertility in that lagged
fertility levels become important explanatory variables for current fertility.32

This approach represents a direct attempt to “dynamicize” earlier static life-
time fertility models, without having to solve the underlying dynamic maxi-
mization problem. Applied to fertility data at higher levels of aggregation
than individual households, fitted stock-adjustment equations were shown
to have some descriptive value (Schultz 1980; Lee 1981).

The stock-adjustment approach has the advantage that econometric proce-
dures for estimating such equations are straightforward and well-known.
However, application of this approach to household data may face difficulties
in the presence of individual heterogeneity, which can vary over time and con-
found the presumably fixed parameters of individual stock-adjustment equa-
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tions. Moreover, at the aggregate level, the issue of parameter stability inad
hocequations can be even more serious, as the well-known critique of Lucas
(1976) shows. Besides this issue, there is the more general question of how to
interpret reasonable empirical findings, when it is unclear what kind of indi-
vidual household behavior underlies the stock-adjustment process that one is
fitting.

Other approaches set aside altogether the issue of fitting the actual dy-
namic structural equations (or approximations thereof) in favor of testing
model implications directly. The estimating model can be based closely or
loosely on an underlying theoretical dynamic model, but it serves mainly to
test implications or predictions. A case in point is Cigno and Ermisch
(1989), which outlines an explicit theoretical framework (based on Cigno
1988) of the timing and spacing of births, emphasizing the effects of wo-
men’s earnings profiles over the life-cycle. Their model differs substantially
from the models mentioned in Sect. 2 in that it assumes perfect capital mar-
kets and ignores the stochastic nature of the birth process. The authors ex-
plicitly recognize, however, that they cannot estimate the structural parame-
ters of the theoretical model. Empirical analysis is based, therefore, on a
posited ordered probit model of current family size as a function of individ-
ual characteristics. They use the probit framework to test theoretical predic-
tions regarding the effects of fertility variates (age at marriage, work experi-
ence, last occupation, education, lifetime earnings, time) on the time profile
of birth rates.

Rosenzweig and Schultz (1985, 1987, 1989) analyze atime-aggregated
version of what they call an individual’s “reproduction function.” This
function, essentially a lifetime fertility equation, is a key component33 of
their 1985 theoretical model nested within the dynamic framework of Sect.
2. A similar type of lifetime fertility equation is also employed by Moffitt
(1982). In both cases, the time-aggregated reproduction function regards
lifetime conception rates as a function of the individual’s age (or average
age during the fertile cycle), along with other variables of interest. (Moffitt
looks at a “relative” lifetime wealth variable, while Rosenzweig and
Schultz study persistent individual heterogeneity and average contraceptive
usage over the individual’s lifetime.) Despite the incorporation of time ef-
fects via the age variable, both models, as implemented, reduce to essen-
tially static models of lifetime fertility. Dynamic issues like the pace and
spacing of births can be studied (since the age variable acts like a time
trend) but only to a very limited extent. Further, to do this requires the ana-
lyst to adequately control forall individual-varying components of the
model, so that the variation of ages in the sample picks up the low-fre-
quency, long-run movements in total births.

As implemented, however, the Rosenzweig-Schultz and Moffitt models
are not as well-suited for analyzing fertility dynamics as many of the models
discussed previously. Put simply, fertility variates like birth intervals or the
time of the first birth are as much affected by temporary shocks as they are
affected by persistent, long-run components of behavior, and would be inade-
quately analyzed by relying on a simple time trend disguised as an age vari-
able. Questions of adjustment over time are more naturally handled by build-
ing in lag structures and serial correlation, but time-aggregation minimizes, if
not eliminates, the role of these processes. These models did fill a gap in the
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empirical fertility literature at the time by introducingad hocdynamics (via
the age variable). But their usefulness is mainly for studying the implications
of intertemporal optimization forlifetime fertility-outcomes, not for analysis
of intertemporal behavior itself.

Lastly, to explain recent Swedish fertility behavior, Walker (1995) presents
a neoclassical economic framework to assess the effect of public policies on
the price of fertility, and on the timing and spacing of births. Specifically, he
looks at two measures: (i) the shadow price of fertility for a 25-year old wo-
man, and (ii) relative price of fertility at ages 35 and 24. He finds that the
estimated time series of prices of fertility can well explain the recent Swedish
fertility pattern. Both economic conditions and public programs contriubed to
the observed fertility pattern. Walker’s use of the shadow price of fertility of-
fers a simple way of incorporating public programs and economic conditions
into a single measure to assess their effects on fertility dynamics. However, as
noted by the author, the strong and ad hoc nature of assumptions needed to
generate the estimates of the shadow price caution against direct interpreta-
tion of the causations involved.

5. Conclusions

This paper surveys dynamic microeconomic models of fertility, which we
have taken to mean those that explain the evolution of fertility behavior
and outcomes of economizing individuals over many time periods. We have
focused attention on dynamic fertility models of the structural and reduced-
form variety.

Well-specified structural models can accommodate complicated interac-
tions between fertility variates and other economic variables, leading to a
rich set of analytical predictions about observed behavior. They can also ac-
commodate many general and realistic patterns of uncertainty and serial
correlation, and offer clear and explicit interpretations of estimated parame-
ters and relationships. Since structural models impose relatively strong re-
strictions on the data, one would expect them to be less useful as descrip-
tive models of fertility data. Wolpin (1984), however, shows that a well-de-
signed parametric structural model can adequately characterize the complex
time-profile of fertility variates in a parsimonious way. Analytically, the
principal problem with a structural approach is the lack of closed-form so-
lutions for any except very stylized versions of these models. In applied
practice this necessitates the use of fairly complex, if accurate, procedures
for the numerical calculation of structural estimates, procedures which are
also quite computational expensive from the standpoint of the average user.

Reduced-form approaches are viable alternatives that trade-off strict adher-
ence to exact dynamic solutions in favor of approximate solutions that yield
tractable closed-forms. Reduced-form models, such as hazard or duration
models, can also accommodate complex interactions between fertility vari-
ates, while permitting fairly general error structures. This flexibility confers
great advantages in terms of their ability to describe actual data. At the same
time reduced-form models are set up in a way that makes estimation relatively
straightforward. These advantages are likely behind the continuing popularity
of hazard models in applied fertility research.
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Counterbalancing these advantages, however, are the interpretation is-
sues associated with the use of reduced forms. Specifically, issues like that
of unobserved heterogeneity, which may be better handled by an explicit
structural model, bedevil the interpretation of results from reduced-form
models. Finally, despite the large body of empirical work that relies on re-
duced-form models, more work with better micro data is still called for,
and perhaps closer adherence to exact theoretical restrictions may also be
needed to sharpen empirical results.

Heckman and Walker (1990a) note that there is little consensus on theo-
retical models at the moment. This has two implications for the development
of structural models. On the one hand, disagreements about the appropriate
theoretical model will caused researchers to rely more heavily on less sty-
lized methodologies, such as hazard models, that are conformable with sev-
eral possible underlying theories. On the other hand, disagreements of this
sort are healthy for the development of structural models to the extent that
experimentation with functional forms, error structures, etc., is encouraged.

A critical problem in the application of structural models is the lack of
sufficiently realistic models that are easily estimated. This is related to the
general lack of closed-form dynamic solutions to structural models. To
some extent, these difficulties are being alleviated by recent advances in
computational techniques such as those covered in Sect. 2.4 above. These
represent a definite step forward, but researchers are still far from having
tractable and realistic structural fertility models that can be estimated in
transparent and straightforward ways.

Our belief is that much of the demand for applied analysis is currently
being satisfied by reduced-form models of the Heckman-Walker or Hotz-
Miller type. There exists, however, a real possibility for significant discov-
eries from application of models of the structural variety, especially if em-
pirical techniques like that of Hotz and Miller (1993) or Rust (1995) lead
to dramatic reductions in estimation complexity. But even empirical studies
of the predictions of a dynamic model (e.g., Cigno and Ermisch 1989) can
offer useful insights that can reshape our prior understanding of fertility re-
lationships. Inasmuch as these priors affect fundamental things, such as the
choice of regressors of a reduced-form hazard model, the practical impact
of structural models can be nontrivial.

It is clear, however, that fertility models have entered a new phase in
their development. In this new era, dynamic issues such as the onset, pace,
and spacing of births, and the evolution of contraceptive behavior over
time are the central analytical and empirical issues of interest. The precise
nature and structure of uncertainty in a model, the transmission mecha-
nisms, and the adjustment patterns for these random shocks are now among
the critical specification issues facing researchers. The complex relation-
ships between fertility variables, economic variables, infant mortality risk,
exogenous shocks, and unobserved heterogeneity suggest, indeed demand,
sharper lenses with which to examine existing and forthcoming data sets.
The methodologies discussed herein represent, in our view, the existing
state of a still-evolving art.
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Endnotes
1 The remaining “other” models include partly dynamic models that test model implications

but do not fit structural dynamic equations, and models which introduce dynamics inad
hoc fashion, e.g., lagged adjustment or distributed-lag models. An example of a partly
dynamic framework is the estimating model of Rosenzweig and Schultz (1985). Cigno and
Ermisch (1989) test implications of their structural model without estimating structural pa-
rameters. Examples ofad hocestimating models are Montgomery and Casterline (1993),
and Lee (1981), and Schultz (1980).

2 Examples are Butz and Ward (1979), Barro and Becker (1988, 1989), Benhabib and Nishi-
mura (1989), Heckman and Walker (1989), and Macunovich (1995).

3 One exception is the macro-time series framework of Butz and Ward (1979).
4 To cite a few: (i) fertility rates in developing countries appear to be converging over time;

(ii) the spacing of births tends to become narrower among higher fertility women, and
becomes less narrow as parity increases; (iii) current and future levels of the woman’s
wage and husband’s income are generally important explanatory variables for the number
of birthsand the timing of the first birth; (iv) fertility declines as the risks of infant mortal-
ity decline; (v) at the aggregate level, fertility levels in the developed economies like the
United States are countercyclical to the business cycle. (As labor force participation rates
are procyclical, this may be vievwed as evidence of a fertility-work tradeoff.)

5 The property of decisions being forward-looking means the following: if one were to look
at the segment of the optimal fertility policy beinning from some arbitrary timet0 in the
life-cycle, that segment is optimal for balance of the individual’s lifetime, given what the
individual knows att0 about the future. Time consistency, on the other hand, implies that
at any point of timet0, the optimal policy for the balance of the individual’s life-cycle will
be unchanged as long as thestate(i.e., the set of “givens”) att0 is unchanged. Time-con-
sistency means that the past history of choices or events has no independent influence on
optimal choices for the future. The current state is all that matters.

6 Among the models that fit under this framework are Heckman and Willis (1976), Wolpin
(1984), Hotz and Miller (1984), Rosenzweig and Schultz (1985), Newman (1988), and
Leung (1991).

7 As noted by Leung (1991), when a continuous measure of family sizeMt is desired (say in
order to define the derivative ofU with respect toMt), Mt can be replaced with a flow of
“child services” in efficiency units, i.e.,Mt*= wtMt, where wt is a constant “service”
coefficient taking continuous values over time.Mt* is continuous and porportional to family
sizeMt.

8 Rosenzweig and Schultz (1987) state that this assumption is not critical for most analytical
results, but it is not known whether the quantitative effects matter. In a recent paper by
Rosenzweig and Wolpin (1993) Indian farmers’ investment in bullocks (cattle) was found
to be useful for intertemporal wealth transfers in the face of risk. While children are gen-
erally not liquidated for purposes of consumption smoothing, children may be put to work
at some stage even before full adulthood to smooth incomes. Moreover, as mentioned in
the text, a new child, being durable, can serve as a vehicle (albeit a very inefficient one)
for transferring income intertemporally.

9 Leung (1991) really has two models: a basic fertility model and a model of parental sex
preferences. What we have been referring to in this paper is his basic fertility model, which
is virtually the same as the Heckman and Willis (1976) model. The choice ofut, however,
is not the focal point of his paper.

10 Newman’s (1988) model is set up in continuous time, so that the probabilitiespb and pm

are continuous-time (Poisson) processes. Newman’s model is unique among dynamic fertil-
ity models in that it possesses a closed-form solution for the optimalut lies in the interior
of the interval�u; �u�, and the value function (1). His solution assumes that the optimalut

but this is not restrictive in his view. The presence of any (psychic) costs of using contra-
ception discourages individuals from pushingut to its upper bound, while one never goes
to the lower bound because there are also implicit costs of attaining maximum fecundity,
such as too high a level of coital frequency.

11 When the MCC curve does not exist, as in models whereU does not takeu as an argument
(Wolpin 1984; Hotz and Miller 1984; Rosenzweig and Schultz 1985) contraceptive choice
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reduces to choosing either full contraceptionu= ū wheneverDV<0, or minimal contracep-
tion u=u, wheneverDV>0.

12 This result appears as early as Heckman and Willis (1976), where the value functionV is
seen as the discounted sum of several indirect utility functions, each of which is concave
in Mt. Hotz and Miller (1984), however, argue that concavity is not straightforward for
maximum-value functions such asV. Newman (1988) proves concavity ofV in Mt under
quadratic utility by the “guess-and-verify” method. To do this Newman exploits the similar-
ity between the functional form of the post-childbearing value function and the (concave)
utility function during childbearing years. Leung (1991) also proves concavity (cf. his Pro-
position 1), this time using an induction argument based on concavity of the post-childbear-
ing value function. Leung mentions the Newman result but claims that his concavity result
is a new result. More accurately, his proof is new and more general.

13 This sign ambiguity raises the possibility of threshold effects associated with the values of
exogenous variables or parameters.

14 To the extent that mothers in developed economies have higher health stocks than their
counterparts in developing economies, the natural odds of a birthpb will be higher, every-
thing else the same, and thus the more rigorous the contraceptive regime will be as parity
rises. In Newman (1988) it is lower infant mortality risk,pm, rather than higher natural
fecundity,pb, behind the size of the shift in EMBC. The difference between the result in
the text and his is due to the simplifying assumption we made that the net birth probability
is given byp=pb(1 –ut)–pm which assumes no interaction ofpm with ut.

15 See Wolpin (1984), Table 3, for an example based on Malaysian data.
16 Of course if the EMBC curve were located below zero, so that the individual wants to have

a birth, rather than prevent one, she should already be at the lowest contraceptive levelu.
In Newman (1988) the solution foru is always an interior one, and corresponds to the
situation of EMBC>0 discussed in the text.

17 The expression for the MCC curve isUXt
pu

t – Uut
. The derivative of this with respect to

incomeIt is UXXpu
t <0 (assuming thatUuX=0). This implies a downward shift of MCC.

18 Heckman and Willis point out that the optimal lifetime family size should be independent
of the shape of the income time-profile when capital markets are perfect. The common
assumption made in these models, however, is that capital markets do not exist that allow
households to borrow on the basis of their future incomes. Under these conditions one may
expect lifetime family size to vary with the growth rate of income, for a given level of
permanent income. For example, when income is steeply rising, households find it optimal
to delay or space births until later periods. Suppose that the household faces a nonzero
probability of becoming sterile, as in Hotz and Miller (1984). Then interaction between
birth delay/spacing behavior and this probability should lead to lower expected family sizes
in households with steeply rising incomes.

19 Recall that in Wolpin (1984) fertility control is perfect.
20 As in Sect. 2.1, all expectations are conditional on the state att. In Wolpin (1984) the state

at t consists of the value of family sizeM at the beginning of periodt, and all prior realiza-
tions of the model’s random components, namely child mortality risk, preference shocks,
and income shocks. There is a slight interpretational difference in the time subscript at-
tached to the beginning-of-period family sizeM in the text above, and in the original Wol-
pin paper. In Wolpin (1984) the value ofM at the beginning of periodt was denoteMt–1,
whereas we denote this asMt. This difference is purely semantic – our time notation onM
conforms to the timing convention made earlier in (3).

21 From this point on we follow the discussion in Keane and Wolpin (1994), adapting their
findings and arguments to the original Wolpin (1984) estimation problem where possible.

22 As indicated at the beginning of Sect. 2.1, the error termet+1 arises from the birth and
mortality risks, preference shocks and possibly other sources of uncertainty like income
shocks or wage/price shocks. (Note that in the text,et+1 contains the preference shock
ht+1.) In a more general sense,et+1 can be thought of as the forecast error att.

23 More generally, the stateMt would not just be family size att but all variables that sum-
marize the current position of the dynamic system, e.g., the realization of any preference
shocks at the beginning oft, income shocks that arrive at the beginning of periodt, the age
of the individual att, etc. For purposes of our example we have assumed that the state att
is completely summarized by family sizeMt.
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24 For the more specific problem of evaluating equation (16), or (9), the computational con-
siderations involved are essentially the same as those involved in the evaluation of (10) of
Keane and Wolpin (1994), or (11) in Wolpin (1984). To simplify calculations, Wolpin
(1984) assumes normality of the preference shockht alone. (Joint normality with other
components of the error termet was not imposed.) But even after simplifications, as per his
equation (15) one must still evaluate several conditional expectations by numerical integra-
tion, and iterate backward for all time periods.

25 See Kiefer (1988) and Lancaster (1990) for economic applications. Standard statistical
books on hazard models include Kalbfleisch and Prentice (1980) and Cox and Oakes
(1984). For a less technical discussion of hazard models and applications in social sciences,
see Allison (1984).

26 Sheps and Menken (1973), among others, develop models of fertility in which persistent
differences among women in unobserved fecundity give rise to unobserved heterogeneity.

27 The unobservable for spellj is fj h and the covariance betweenfj h and fkh is fj fk Var (h)
(assumingE(h)=0).

28 It is possible to parametrizeP(j–1) to depend on regressors (Heckman and Walker 1987) but
this was not pursued in Heckman and Walker (1990a,b, 1991).

29 There appears to be a typo in their Table 2 since the estimated coefficients on female edu-
cation are negative for all cohorts.

30 This finding is in sharp contrast to their earlier result using the Hutterite data (Heckman
and Walker 1987). Heckman and Walker (1990a,b, 1991) offer the explanation that behav-
ior swamps biology in modern Sweden.

31 Hotz and Miller (1984) call equation (35) the “contraceptive index” equation. By (36), the
interpretation one should attach toqit is thathigher levels ofqit are associated with higher
birth probabilities, and thereforelower contraceptive levels. To avoid any confusion with
our previous notation, one should remember that the indexqit is inversely proportional to
our contraceptive efficiencyut.

32 In this sense, a recent paper by Montgomery and Casterline (1993) follows in this tradition,
as it posits that current fertility in Taiwanese townships is influenced by the township’s past
fertility levels and past levels of fertility in other neighboring townships.

33 In terms of the general framework of Sect. 2, the reproduction function is analogous to our
net births equation (4), where the explicit birth and mortality probabilities are proxied for
by heterogeneity in individual fecundity and the age of the woman.
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